New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unieqd | Unicode version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 |
Ref | Expression |
---|---|
unieqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 | . 2 | |
2 | unieq 3901 | . 2 | |
3 | 1, 2 | syl 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 |
This theorem is referenced by: uniprg 3907 unisng 3909 iotaeq 4348 iotabi 4349 uniabio 4350 iotanul 4355 dfiota4 4373 elxp4 5109 funfv 5376 fvun 5379 fvco2 5383 fniunfv 5467 |
Copyright terms: Public domain | W3C validator |