| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unipw | Unicode version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (The proof was shortened by Alan Sare, 28-Dec-2008.) (Contributed by SF, 14-Oct-1996.) (Revised by SF, 29-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| unipw | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluni 3895 | 
. . . 4
 | |
| 2 | vex 2863 | 
. . . . . . . 8
 | |
| 3 | 2 | elpw 3729 | 
. . . . . . 7
 | 
| 4 | ssel 3268 | 
. . . . . . 7
 | |
| 5 | 3, 4 | sylbi 187 | 
. . . . . 6
 | 
| 6 | 5 | impcom 419 | 
. . . . 5
 | 
| 7 | 6 | exlimiv 1634 | 
. . . 4
 | 
| 8 | 1, 7 | sylbi 187 | 
. . 3
 | 
| 9 | vex 2863 | 
. . . . 5
 | |
| 10 | 9 | snid 3761 | 
. . . 4
 | 
| 11 | snelpwi 4117 | 
. . . 4
 | |
| 12 | elunii 3897 | 
. . . 4
 | |
| 13 | 10, 11, 12 | sylancr 644 | 
. . 3
 | 
| 14 | 8, 13 | impbii 180 | 
. 2
 | 
| 15 | 14 | eqriv 2350 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-uni 3893 | 
| This theorem is referenced by: nnadjoinpw 4522 | 
| Copyright terms: Public domain | W3C validator |