New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4117
 Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (The proof was shortened by Alan Sare, 28-Dec-2008.) (Contributed by SF, 14-Oct-1996.) (Revised by SF, 29-Dec-2008.)
Assertion
Ref Expression
unipw

Proof of Theorem unipw
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3894 . . . 4
2 vex 2862 . . . . . . . 8
32elpw 3728 . . . . . . 7
4 ssel 3267 . . . . . . 7
53, 4sylbi 187 . . . . . 6
65impcom 419 . . . . 5
76exlimiv 1634 . . . 4
81, 7sylbi 187 . . 3
9 vex 2862 . . . . 5
109snid 3760 . . . 4
11 snelpwi 4116 . . . 4
12 elunii 3896 . . . 4
1310, 11, 12sylancr 644 . . 3
148, 13impbii 180 . 2
1514eqriv 2350 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 358  wex 1541   wceq 1642   wcel 1710   wss 3257  cpw 3722  csn 3737  cuni 3891 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259  df-nul 3551  df-pw 3724  df-sn 3741  df-uni 3892 This theorem is referenced by:  nnadjoinpw  4521
 Copyright terms: Public domain W3C validator