Step | Hyp | Ref
| Expression |
1 | | enmap1lem5.1 |
. . . 4
⊢ W = (s ∈ (A
↑m G) ↦ (r ∘ s)) |
2 | 1 | enmap1lem2 6071 |
. . 3
⊢ W Fn (A
↑m G) |
3 | | coeq2 4876 |
. . . . . . 7
⊢ (s = p →
(r ∘
s) = (r
∘ p)) |
4 | | vex 2863 |
. . . . . . . 8
⊢ r ∈
V |
5 | | vex 2863 |
. . . . . . . 8
⊢ p ∈
V |
6 | 4, 5 | coex 4751 |
. . . . . . 7
⊢ (r ∘ p) ∈
V |
7 | 3, 1, 6 | fvmpt 5701 |
. . . . . 6
⊢ (p ∈ (A ↑m G) → (W
‘p) = (r ∘ p)) |
8 | 7 | adantl 452 |
. . . . 5
⊢ ((r:A–1-1-onto→B ∧ p ∈ (A
↑m G)) →
(W ‘p) = (r ∘ p)) |
9 | | f1of 5288 |
. . . . . . 7
⊢ (r:A–1-1-onto→B →
r:A–→B) |
10 | | elmapi 6017 |
. . . . . . 7
⊢ (p ∈ (A ↑m G) → p:G–→A) |
11 | | fco 5232 |
. . . . . . 7
⊢ ((r:A–→B
∧ p:G–→A)
→ (r ∘ p):G–→B) |
12 | 9, 10, 11 | syl2an 463 |
. . . . . 6
⊢ ((r:A–1-1-onto→B ∧ p ∈ (A
↑m G)) →
(r ∘
p):G–→B) |
13 | | f1ofo 5294 |
. . . . . . . . 9
⊢ (r:A–1-1-onto→B →
r:A–onto→B) |
14 | | forn 5273 |
. . . . . . . . 9
⊢ (r:A–onto→B
→ ran r = B) |
15 | 13, 14 | syl 15 |
. . . . . . . 8
⊢ (r:A–1-1-onto→B →
ran r = B) |
16 | 4 | rnex 5108 |
. . . . . . . 8
⊢ ran r ∈
V |
17 | 15, 16 | syl6eqelr 2442 |
. . . . . . 7
⊢ (r:A–1-1-onto→B →
B ∈
V) |
18 | | elovex2 5651 |
. . . . . . 7
⊢ (p ∈ (A ↑m G) → G
∈ V) |
19 | | elmapg 6013 |
. . . . . . . 8
⊢ ((B ∈ V ∧ G ∈ V ∧ (r ∘ p) ∈ V) →
((r ∘
p) ∈
(B ↑m G) ↔ (r
∘ p):G–→B)) |
20 | 6, 19 | mp3an3 1266 |
. . . . . . 7
⊢ ((B ∈ V ∧ G ∈ V) → ((r
∘ p)
∈ (B
↑m G) ↔
(r ∘
p):G–→B)) |
21 | 17, 18, 20 | syl2an 463 |
. . . . . 6
⊢ ((r:A–1-1-onto→B ∧ p ∈ (A
↑m G)) →
((r ∘
p) ∈
(B ↑m G) ↔ (r
∘ p):G–→B)) |
22 | 12, 21 | mpbird 223 |
. . . . 5
⊢ ((r:A–1-1-onto→B ∧ p ∈ (A
↑m G)) →
(r ∘
p) ∈
(B ↑m G)) |
23 | 8, 22 | eqeltrd 2427 |
. . . 4
⊢ ((r:A–1-1-onto→B ∧ p ∈ (A
↑m G)) →
(W ‘p) ∈ (B ↑m G)) |
24 | 23 | ralrimiva 2698 |
. . 3
⊢ (r:A–1-1-onto→B →
∀p
∈ (A
↑m G)(W ‘p)
∈ (B
↑m G)) |
25 | | fnfvrnss 5430 |
. . 3
⊢ ((W Fn (A
↑m G) ∧ ∀p ∈ (A ↑m G)(W
‘p) ∈ (B
↑m G)) → ran
W ⊆
(B ↑m G)) |
26 | 2, 24, 25 | sylancr 644 |
. 2
⊢ (r:A–1-1-onto→B →
ran W ⊆
(B ↑m G)) |
27 | | f1ocnv 5300 |
. . . . . . . . . . 11
⊢ (r:A–1-1-onto→B →
◡r:B–1-1-onto→A) |
28 | | f1of 5288 |
. . . . . . . . . . 11
⊢ (◡r:B–1-1-onto→A →
◡r:B–→A) |
29 | 27, 28 | syl 15 |
. . . . . . . . . 10
⊢ (r:A–1-1-onto→B →
◡r:B–→A) |
30 | | elmapi 6017 |
. . . . . . . . . 10
⊢ (p ∈ (B ↑m G) → p:G–→B) |
31 | | fco 5232 |
. . . . . . . . . 10
⊢ ((◡r:B–→A
∧ p:G–→B)
→ (◡r ∘ p):G–→A) |
32 | 29, 30, 31 | syl2an 463 |
. . . . . . . . 9
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) → (◡r ∘ p):G–→A) |
33 | | f1odm 5291 |
. . . . . . . . . . 11
⊢ (r:A–1-1-onto→B →
dom r = A) |
34 | 4 | dmex 5107 |
. . . . . . . . . . 11
⊢ dom r ∈
V |
35 | 33, 34 | syl6eqelr 2442 |
. . . . . . . . . 10
⊢ (r:A–1-1-onto→B →
A ∈
V) |
36 | | elovex2 5651 |
. . . . . . . . . 10
⊢ (p ∈ (B ↑m G) → G
∈ V) |
37 | 4 | cnvex 5103 |
. . . . . . . . . . . 12
⊢ ◡r ∈ V |
38 | 37, 5 | coex 4751 |
. . . . . . . . . . 11
⊢ (◡r ∘ p) ∈ V |
39 | | elmapg 6013 |
. . . . . . . . . . 11
⊢ ((A ∈ V ∧ G ∈ V ∧ (◡r ∘ p) ∈ V) → ((◡r ∘ p) ∈ (A
↑m G) ↔ (◡r ∘ p):G–→A)) |
40 | 38, 39 | mp3an3 1266 |
. . . . . . . . . 10
⊢ ((A ∈ V ∧ G ∈ V) → ((◡r ∘ p) ∈ (A
↑m G) ↔ (◡r ∘ p):G–→A)) |
41 | 35, 36, 40 | syl2an 463 |
. . . . . . . . 9
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
((◡r ∘ p) ∈ (A ↑m G) ↔ (◡r ∘ p):G–→A)) |
42 | 32, 41 | mpbird 223 |
. . . . . . . 8
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) → (◡r ∘ p) ∈ (A
↑m G)) |
43 | | coeq2 4876 |
. . . . . . . . 9
⊢ (s = (◡r ∘ p) →
(r ∘
s) = (r
∘ (◡r ∘ p))) |
44 | 4, 38 | coex 4751 |
. . . . . . . . 9
⊢ (r ∘ (◡r ∘ p)) ∈ V |
45 | 43, 1, 44 | fvmpt 5701 |
. . . . . . . 8
⊢ ((◡r ∘ p) ∈ (A
↑m G) →
(W ‘(◡r ∘ p)) =
(r ∘
(◡r
∘ p))) |
46 | 42, 45 | syl 15 |
. . . . . . 7
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
(W ‘(◡r ∘ p)) =
(r ∘
(◡r
∘ p))) |
47 | | coass 5098 |
. . . . . . . 8
⊢ ((r ∘ ◡r) ∘ p) =
(r ∘
(◡r
∘ p)) |
48 | | f1ococnv2 5310 |
. . . . . . . . . 10
⊢ (r:A–1-1-onto→B →
(r ∘
◡r)
= ( I ↾ B)) |
49 | 48 | coeq1d 4879 |
. . . . . . . . 9
⊢ (r:A–1-1-onto→B →
((r ∘
◡r)
∘ p) =
(( I ↾ B) ∘ p)) |
50 | | fcoi2 5242 |
. . . . . . . . . 10
⊢ (p:G–→B
→ (( I ↾ B) ∘ p) = p) |
51 | 30, 50 | syl 15 |
. . . . . . . . 9
⊢ (p ∈ (B ↑m G) → (( I ↾
B) ∘
p) = p) |
52 | 49, 51 | sylan9eq 2405 |
. . . . . . . 8
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
((r ∘
◡r)
∘ p) =
p) |
53 | 47, 52 | syl5eqr 2399 |
. . . . . . 7
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
(r ∘
(◡r
∘ p)) =
p) |
54 | 46, 53 | eqtrd 2385 |
. . . . . 6
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
(W ‘(◡r ∘ p)) =
p) |
55 | | fnbrfvb 5359 |
. . . . . . 7
⊢ ((W Fn (A
↑m G) ∧ (◡r ∘ p) ∈ (A ↑m G)) → ((W
‘(◡r ∘ p)) = p ↔
(◡r
∘ p)Wp)) |
56 | 2, 42, 55 | sylancr 644 |
. . . . . 6
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
((W ‘(◡r ∘ p)) =
p ↔ (◡r ∘ p)Wp)) |
57 | 54, 56 | mpbid 201 |
. . . . 5
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) → (◡r ∘ p)Wp) |
58 | | brelrn 4961 |
. . . . 5
⊢ ((◡r ∘ p)Wp →
p ∈ ran
W) |
59 | 57, 58 | syl 15 |
. . . 4
⊢ ((r:A–1-1-onto→B ∧ p ∈ (B
↑m G)) →
p ∈ ran
W) |
60 | 59 | ex 423 |
. . 3
⊢ (r:A–1-1-onto→B →
(p ∈
(B ↑m G) → p
∈ ran W)) |
61 | 60 | ssrdv 3279 |
. 2
⊢ (r:A–1-1-onto→B →
(B ↑m G) ⊆ ran W) |
62 | 26, 61 | eqssd 3290 |
1
⊢ (r:A–1-1-onto→B →
ran W = (B ↑m G)) |