NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  findsd Unicode version

Theorem findsd 4411
Description: Principle of finite induction over the finite cardinals, using implicit substitutions. The first hypothesis ensures stratification of , the next four set up the substitutions, and the last two set up the base case and induction hypothesis. This version allows for an extra deduction clause that may make proving stratification simpler. Compare Theorem X.1.13 of [Rosser] p. 277. (Contributed by SF, 31-Jul-2019.)
Hypotheses
Ref Expression
findsd.1
findsd.2 0c
findsd.3
findsd.4 1c
findsd.5
findsd.6
findsd.7 Nn
Assertion
Ref Expression
findsd Nn
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()   ()   (,)

Proof of Theorem findsd
StepHypRef Expression
1 findsd.1 . . . . 5
2 findsd.6 . . . . . 6
3 0cex 4393 . . . . . . 7 0c
4 findsd.2 . . . . . . 7 0c
53, 4elab 2986 . . . . . 6 0c
62, 5sylibr 203 . . . . 5 0c
7 findsd.7 . . . . . . . 8 Nn
8 vex 2863 . . . . . . . . 9
9 findsd.3 . . . . . . . . 9
108, 9elab 2986 . . . . . . . 8
11 1cex 4143 . . . . . . . . . 10 1c
128, 11addcex 4395 . . . . . . . . 9 1c
13 findsd.4 . . . . . . . . 9 1c
1412, 13elab 2986 . . . . . . . 8 1c
157, 10, 143imtr4g 261 . . . . . . 7 Nn 1c
1615ancoms 439 . . . . . 6 Nn 1c
1716ralrimiva 2698 . . . . 5 Nn 1c
18 peano5 4410 . . . . 5 0c Nn 1c Nn
191, 6, 17, 18syl3anc 1182 . . . 4 Nn
2019sseld 3273 . . 3 Nn
2120impcom 419 . 2 Nn
22 findsd.5 . . . 4
2322elabg 2987 . . 3 Nn
2423adantr 451 . 2 Nn
2521, 24mpbid 201 1 Nn
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  cab 2339  wral 2615   wss 3258  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-0c 4378  df-addc 4379  df-nnc 4380
This theorem is referenced by:  finds  4412  preaddccan2  4456  addccan2nc  6266  fnfrec  6321
  Copyright terms: Public domain W3C validator