| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > findsd | Unicode version | ||
| Description: Principle of finite
induction over the finite cardinals, using implicit
substitutions. The first hypothesis ensures stratification of |
| Ref | Expression |
|---|---|
| findsd.1 |
|
| findsd.2 |
|
| findsd.3 |
|
| findsd.4 |
|
| findsd.5 |
|
| findsd.6 |
|
| findsd.7 |
|
| Ref | Expression |
|---|---|
| findsd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findsd.1 |
. . . . 5
| |
| 2 | findsd.6 |
. . . . . 6
| |
| 3 | 0cex 4393 |
. . . . . . 7
| |
| 4 | findsd.2 |
. . . . . . 7
| |
| 5 | 3, 4 | elab 2986 |
. . . . . 6
|
| 6 | 2, 5 | sylibr 203 |
. . . . 5
|
| 7 | findsd.7 |
. . . . . . . 8
| |
| 8 | vex 2863 |
. . . . . . . . 9
| |
| 9 | findsd.3 |
. . . . . . . . 9
| |
| 10 | 8, 9 | elab 2986 |
. . . . . . . 8
|
| 11 | 1cex 4143 |
. . . . . . . . . 10
| |
| 12 | 8, 11 | addcex 4395 |
. . . . . . . . 9
|
| 13 | findsd.4 |
. . . . . . . . 9
| |
| 14 | 12, 13 | elab 2986 |
. . . . . . . 8
|
| 15 | 7, 10, 14 | 3imtr4g 261 |
. . . . . . 7
|
| 16 | 15 | ancoms 439 |
. . . . . 6
|
| 17 | 16 | ralrimiva 2698 |
. . . . 5
|
| 18 | peano5 4410 |
. . . . 5
| |
| 19 | 1, 6, 17, 18 | syl3anc 1182 |
. . . 4
|
| 20 | 19 | sseld 3273 |
. . 3
|
| 21 | 20 | impcom 419 |
. 2
|
| 22 | findsd.5 |
. . . 4
| |
| 23 | 22 | elabg 2987 |
. . 3
|
| 24 | 23 | adantr 451 |
. 2
|
| 25 | 21, 24 | mpbid 201 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-0c 4378 df-addc 4379 df-nnc 4380 |
| This theorem is referenced by: finds 4412 preaddccan2 4456 addccan2nc 6266 fnfrec 6321 |
| Copyright terms: Public domain | W3C validator |