New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impcom | Unicode version |
Description: Importation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
imp.1 |
Ref | Expression |
---|---|
impcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp.1 | . . 3 | |
2 | 1 | com12 27 | . 2 |
3 | 2 | imp 418 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpan9 455 equtr2 1688 19.41 1879 dvelimf 1997 ax11eq 2193 ax11el 2194 mopick 2266 2euex 2276 gencl 2887 2gencl 2888 rspccva 2954 sbcimdv 3107 sseq0 3582 minel 3606 r19.2z 3639 elelpwi 3732 ssuni 3913 unipw 4117 pwadjoin 4119 opkthg 4131 sspw1 4335 findsd 4410 nnsucelr 4428 nndisjeq 4429 tfin11 4493 spfinsfincl 4539 phi11lem1 4595 phialllem1 4616 2optocl 4839 3optocl 4840 fneu 5187 fnun 5189 fss 5230 fun 5236 dmfex 5247 fvelimab 5370 eqfnfv 5392 fnressn 5438 fressnfv 5439 funfvima3 5461 f1fveq 5473 isotr 5495 ndmovcl 5614 fvmptss 5705 fnfullfunlem2 5857 clos1conn 5879 clos1basesuc 5882 2ecoptocl 5997 ce0addcnnul 6179 sbthlem2 6204 nchoicelem12 6300 frecxp 6314 |
Copyright terms: Public domain | W3C validator |