New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iotabi | Unicode version |
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2464 | . . . . . 6 | |
2 | 1 | biimpi 186 | . . . . 5 |
3 | 2 | eqeq1d 2361 | . . . 4 |
4 | 3 | abbidv 2468 | . . 3 |
5 | 4 | unieqd 3903 | . 2 |
6 | df-iota 4340 | . 2 | |
7 | df-iota 4340 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wceq 1642 cab 2339 csn 3738 cuni 3892 cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 |
This theorem is referenced by: iotabidv 4361 iotabii 4362 |
Copyright terms: Public domain | W3C validator |