New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iotabi | GIF version |
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotabi | ⊢ (∀x(φ ↔ ψ) → (℩xφ) = (℩xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2464 | . . . . . 6 ⊢ (∀x(φ ↔ ψ) ↔ {x ∣ φ} = {x ∣ ψ}) | |
2 | 1 | biimpi 186 | . . . . 5 ⊢ (∀x(φ ↔ ψ) → {x ∣ φ} = {x ∣ ψ}) |
3 | 2 | eqeq1d 2361 | . . . 4 ⊢ (∀x(φ ↔ ψ) → ({x ∣ φ} = {z} ↔ {x ∣ ψ} = {z})) |
4 | 3 | abbidv 2468 | . . 3 ⊢ (∀x(φ ↔ ψ) → {z ∣ {x ∣ φ} = {z}} = {z ∣ {x ∣ ψ} = {z}}) |
5 | 4 | unieqd 3903 | . 2 ⊢ (∀x(φ ↔ ψ) → ∪{z ∣ {x ∣ φ} = {z}} = ∪{z ∣ {x ∣ ψ} = {z}}) |
6 | df-iota 4340 | . 2 ⊢ (℩xφ) = ∪{z ∣ {x ∣ φ} = {z}} | |
7 | df-iota 4340 | . 2 ⊢ (℩xψ) = ∪{z ∣ {x ∣ ψ} = {z}} | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (∀x(φ ↔ ψ) → (℩xφ) = (℩xψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 {cab 2339 {csn 3738 ∪cuni 3892 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 |
This theorem is referenced by: iotabidv 4361 iotabii 4362 |
Copyright terms: Public domain | W3C validator |