NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unieq Unicode version

Theorem unieq 3901
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
unieq

Proof of Theorem unieq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2809 . . 3
21abbidv 2468 . 2
3 dfuni2 3894 . 2
4 dfuni2 3894 . 2
52, 3, 43eqtr4g 2410 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642   wcel 1710  cab 2339  wrex 2616  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-uni 3893
This theorem is referenced by:  unieqi  3902  unieqd  3903  uniintsn  3964  iununi  4051  pw1equn  4332  pw1eqadj  4333  nnadjoin  4521  pw1fnval  5852  pw1fnf1o  5856  brtcfn  6247
  Copyright terms: Public domain W3C validator