Proof of Theorem iununi
Step | Hyp | Ref
| Expression |
1 | | df-ne 2519 |
. . . . . . 7
⊢ (B ≠ ∅ ↔
¬ B = ∅) |
2 | | iunconst 3978 |
. . . . . . 7
⊢ (B ≠ ∅ →
∪x ∈ B A = A) |
3 | 1, 2 | sylbir 204 |
. . . . . 6
⊢ (¬ B = ∅ →
∪x ∈ B A = A) |
4 | | iun0 4023 |
. . . . . . 7
⊢ ∪x ∈ B ∅ = ∅ |
5 | | id 19 |
. . . . . . . 8
⊢ (A = ∅ →
A = ∅) |
6 | 5 | iuneq2d 3995 |
. . . . . . 7
⊢ (A = ∅ →
∪x ∈ B A = ∪x ∈ B ∅) |
7 | 4, 6, 5 | 3eqtr4a 2411 |
. . . . . 6
⊢ (A = ∅ →
∪x ∈ B A = A) |
8 | 3, 7 | ja 153 |
. . . . 5
⊢ ((B = ∅ →
A = ∅)
→ ∪x
∈ B
A = A) |
9 | 8 | eqcomd 2358 |
. . . 4
⊢ ((B = ∅ →
A = ∅)
→ A = ∪x ∈ B A) |
10 | 9 | uneq1d 3418 |
. . 3
⊢ ((B = ∅ →
A = ∅)
→ (A ∪ ∪x ∈ B x) = (∪x ∈ B A ∪
∪x ∈ B x)) |
11 | | uniiun 4020 |
. . . 4
⊢ ∪B = ∪x ∈ B x |
12 | 11 | uneq2i 3416 |
. . 3
⊢ (A ∪ ∪B) = (A ∪
∪x ∈ B x) |
13 | | iunun 4047 |
. . 3
⊢ ∪x ∈ B (A ∪ x) =
(∪x ∈ B A ∪ ∪x ∈ B x) |
14 | 10, 12, 13 | 3eqtr4g 2410 |
. 2
⊢ ((B = ∅ →
A = ∅)
→ (A ∪ ∪B) = ∪x ∈ B (A ∪ x)) |
15 | | unieq 3901 |
. . . . . . 7
⊢ (B = ∅ →
∪B = ∪∅) |
16 | | uni0 3919 |
. . . . . . 7
⊢ ∪∅ = ∅ |
17 | 15, 16 | syl6eq 2401 |
. . . . . 6
⊢ (B = ∅ →
∪B = ∅) |
18 | 17 | uneq2d 3419 |
. . . . 5
⊢ (B = ∅ →
(A ∪ ∪B) = (A ∪ ∅)) |
19 | | un0 3576 |
. . . . 5
⊢ (A ∪ ∅) =
A |
20 | 18, 19 | syl6eq 2401 |
. . . 4
⊢ (B = ∅ →
(A ∪ ∪B) = A) |
21 | | iuneq1 3983 |
. . . . 5
⊢ (B = ∅ →
∪x ∈ B (A ∪ x) =
∪x ∈ ∅ (A ∪ x)) |
22 | | 0iun 4024 |
. . . . 5
⊢ ∪x ∈ ∅ (A ∪ x) =
∅ |
23 | 21, 22 | syl6eq 2401 |
. . . 4
⊢ (B = ∅ →
∪x ∈ B (A ∪ x) =
∅) |
24 | 20, 23 | eqeq12d 2367 |
. . 3
⊢ (B = ∅ →
((A ∪ ∪B) = ∪x ∈ B (A ∪ x)
↔ A = ∅)) |
25 | 24 | biimpcd 215 |
. 2
⊢ ((A ∪ ∪B) = ∪x ∈ B (A ∪
x) → (B = ∅ →
A = ∅)) |
26 | 14, 25 | impbii 180 |
1
⊢ ((B = ∅ →
A = ∅)
↔ (A ∪ ∪B) = ∪x ∈ B (A ∪ x)) |