New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncfineleq | Unicode version |
Description: Equality law for finite cardinality. Theorem X.1.24 of [Rosser] p. 527. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
ncfineleq | Fin Ncfin Ncfin Ncfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . . . 5 Fin Ncfin Fin | |
2 | ncfinprop 4475 | . . . . . 6 Fin Ncfin Nn Ncfin | |
3 | 2 | 3adant3 975 | . . . . 5 Fin Ncfin Nn Ncfin |
4 | simpl 443 | . . . . 5 Ncfin Nn Ncfin Ncfin Nn | |
5 | 1, 3, 4 | 3syl 18 | . . . 4 Fin Ncfin Ncfin Nn |
6 | ncfinprop 4475 | . . . . . . 7 Fin Ncfin Nn Ncfin | |
7 | 6 | 3adant2 974 | . . . . . 6 Fin Ncfin Nn Ncfin |
8 | 7 | simpld 445 | . . . . 5 Fin Ncfin Nn |
9 | 8 | adantr 451 | . . . 4 Fin Ncfin Ncfin Nn |
10 | 3 | simprd 449 | . . . . 5 Fin Ncfin |
11 | 10 | adantr 451 | . . . 4 Fin Ncfin Ncfin |
12 | simpr 447 | . . . 4 Fin Ncfin Ncfin | |
13 | nnceleq 4431 | . . . 4 Ncfin Nn Ncfin Nn Ncfin Ncfin Ncfin Ncfin | |
14 | 5, 9, 11, 12, 13 | syl22anc 1183 | . . 3 Fin Ncfin Ncfin Ncfin |
15 | 14 | ex 423 | . 2 Fin Ncfin Ncfin Ncfin |
16 | eleq2 2414 | . . 3 Ncfin Ncfin Ncfin Ncfin | |
17 | 10, 16 | syl5ibcom 211 | . 2 Fin Ncfin Ncfin Ncfin |
18 | 15, 17 | impbid 183 | 1 Fin Ncfin Ncfin Ncfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wceq 1642 wcel 1710 cvv 2860 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-ncfin 4443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |