New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncfineleq | GIF version |
Description: Equality law for finite cardinality. Theorem X.1.24 of [Rosser] p. 527. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
ncfineleq | ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → (A ∈ Ncfin B ↔ Ncfin A = Ncfin B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . . . 5 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → (V ∈ Fin ∧ A ∈ V ∧ B ∈ W)) | |
2 | ncfinprop 4474 | . . . . . 6 ⊢ ((V ∈ Fin ∧ A ∈ V) → ( Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) | |
3 | 2 | 3adant3 975 | . . . . 5 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → ( Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) |
4 | simpl 443 | . . . . 5 ⊢ (( Ncfin A ∈ Nn ∧ A ∈ Ncfin A) → Ncfin A ∈ Nn ) | |
5 | 1, 3, 4 | 3syl 18 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → Ncfin A ∈ Nn ) |
6 | ncfinprop 4474 | . . . . . . 7 ⊢ ((V ∈ Fin ∧ B ∈ W) → ( Ncfin B ∈ Nn ∧ B ∈ Ncfin B)) | |
7 | 6 | 3adant2 974 | . . . . . 6 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → ( Ncfin B ∈ Nn ∧ B ∈ Ncfin B)) |
8 | 7 | simpld 445 | . . . . 5 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → Ncfin B ∈ Nn ) |
9 | 8 | adantr 451 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → Ncfin B ∈ Nn ) |
10 | 3 | simprd 449 | . . . . 5 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → A ∈ Ncfin A) |
11 | 10 | adantr 451 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → A ∈ Ncfin A) |
12 | simpr 447 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → A ∈ Ncfin B) | |
13 | nnceleq 4430 | . . . 4 ⊢ ((( Ncfin A ∈ Nn ∧ Ncfin B ∈ Nn ) ∧ (A ∈ Ncfin A ∧ A ∈ Ncfin B)) → Ncfin A = Ncfin B) | |
14 | 5, 9, 11, 12, 13 | syl22anc 1183 | . . 3 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → Ncfin A = Ncfin B) |
15 | 14 | ex 423 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → (A ∈ Ncfin B → Ncfin A = Ncfin B)) |
16 | eleq2 2414 | . . 3 ⊢ ( Ncfin A = Ncfin B → (A ∈ Ncfin A ↔ A ∈ Ncfin B)) | |
17 | 10, 16 | syl5ibcom 211 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → ( Ncfin A = Ncfin B → A ∈ Ncfin B)) |
18 | 15, 17 | impbid 183 | 1 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → (A ∈ Ncfin B ↔ Ncfin A = Ncfin B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 Vcvv 2859 Nn cnnc 4373 Fin cfin 4376 Ncfin cncfin 4434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-ncfin 4442 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |