NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncfineleq GIF version

Theorem ncfineleq 4478
Description: Equality law for finite cardinality. Theorem X.1.24 of [Rosser] p. 527. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
ncfineleq ((V Fin A V B W) → (A Ncfin BNcfin A = Ncfin B))

Proof of Theorem ncfineleq
StepHypRef Expression
1 simpl 443 . . . . 5 (((V Fin A V B W) A Ncfin B) → (V Fin A V B W))
2 ncfinprop 4475 . . . . . 6 ((V Fin A V) → ( Ncfin A Nn A Ncfin A))
323adant3 975 . . . . 5 ((V Fin A V B W) → ( Ncfin A Nn A Ncfin A))
4 simpl 443 . . . . 5 (( Ncfin A Nn A Ncfin A) → Ncfin A Nn )
51, 3, 43syl 18 . . . 4 (((V Fin A V B W) A Ncfin B) → Ncfin A Nn )
6 ncfinprop 4475 . . . . . . 7 ((V Fin B W) → ( Ncfin B Nn B Ncfin B))
763adant2 974 . . . . . 6 ((V Fin A V B W) → ( Ncfin B Nn B Ncfin B))
87simpld 445 . . . . 5 ((V Fin A V B W) → Ncfin B Nn )
98adantr 451 . . . 4 (((V Fin A V B W) A Ncfin B) → Ncfin B Nn )
103simprd 449 . . . . 5 ((V Fin A V B W) → A Ncfin A)
1110adantr 451 . . . 4 (((V Fin A V B W) A Ncfin B) → A Ncfin A)
12 simpr 447 . . . 4 (((V Fin A V B W) A Ncfin B) → A Ncfin B)
13 nnceleq 4431 . . . 4 ((( Ncfin A Nn Ncfin B Nn ) (A Ncfin A A Ncfin B)) → Ncfin A = Ncfin B)
145, 9, 11, 12, 13syl22anc 1183 . . 3 (((V Fin A V B W) A Ncfin B) → Ncfin A = Ncfin B)
1514ex 423 . 2 ((V Fin A V B W) → (A Ncfin BNcfin A = Ncfin B))
16 eleq2 2414 . . 3 ( Ncfin A = Ncfin B → (A Ncfin AA Ncfin B))
1710, 16syl5ibcom 211 . 2 ((V Fin A V B W) → ( Ncfin A = Ncfin BA Ncfin B))
1815, 17impbid 183 1 ((V Fin A V B W) → (A Ncfin BNcfin A = Ncfin B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  Vcvv 2860   Nn cnnc 4374   Fin cfin 4377   Ncfin cncfin 4435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-ncfin 4443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator