| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ncfineleq | GIF version | ||
| Description: Equality law for finite cardinality. Theorem X.1.24 of [Rosser] p. 527. (Contributed by SF, 20-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ncfineleq | ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → (A ∈ Ncfin B ↔ Ncfin A = Ncfin B)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 443 | . . . . 5 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → (V ∈ Fin ∧ A ∈ V ∧ B ∈ W)) | |
| 2 | ncfinprop 4475 | . . . . . 6 ⊢ ((V ∈ Fin ∧ A ∈ V) → ( Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) | |
| 3 | 2 | 3adant3 975 | . . . . 5 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → ( Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) | 
| 4 | simpl 443 | . . . . 5 ⊢ (( Ncfin A ∈ Nn ∧ A ∈ Ncfin A) → Ncfin A ∈ Nn ) | |
| 5 | 1, 3, 4 | 3syl 18 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → Ncfin A ∈ Nn ) | 
| 6 | ncfinprop 4475 | . . . . . . 7 ⊢ ((V ∈ Fin ∧ B ∈ W) → ( Ncfin B ∈ Nn ∧ B ∈ Ncfin B)) | |
| 7 | 6 | 3adant2 974 | . . . . . 6 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → ( Ncfin B ∈ Nn ∧ B ∈ Ncfin B)) | 
| 8 | 7 | simpld 445 | . . . . 5 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → Ncfin B ∈ Nn ) | 
| 9 | 8 | adantr 451 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → Ncfin B ∈ Nn ) | 
| 10 | 3 | simprd 449 | . . . . 5 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → A ∈ Ncfin A) | 
| 11 | 10 | adantr 451 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → A ∈ Ncfin A) | 
| 12 | simpr 447 | . . . 4 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → A ∈ Ncfin B) | |
| 13 | nnceleq 4431 | . . . 4 ⊢ ((( Ncfin A ∈ Nn ∧ Ncfin B ∈ Nn ) ∧ (A ∈ Ncfin A ∧ A ∈ Ncfin B)) → Ncfin A = Ncfin B) | |
| 14 | 5, 9, 11, 12, 13 | syl22anc 1183 | . . 3 ⊢ (((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) ∧ A ∈ Ncfin B) → Ncfin A = Ncfin B) | 
| 15 | 14 | ex 423 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → (A ∈ Ncfin B → Ncfin A = Ncfin B)) | 
| 16 | eleq2 2414 | . . 3 ⊢ ( Ncfin A = Ncfin B → (A ∈ Ncfin A ↔ A ∈ Ncfin B)) | |
| 17 | 10, 16 | syl5ibcom 211 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → ( Ncfin A = Ncfin B → A ∈ Ncfin B)) | 
| 18 | 15, 17 | impbid 183 | 1 ⊢ ((V ∈ Fin ∧ A ∈ V ∧ B ∈ W) → (A ∈ Ncfin B ↔ Ncfin A = Ncfin B)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 Vcvv 2860 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-ncfin 4443 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |