NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeqd GIF version

Theorem nfeqd 2504
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (φxA)
nfeqd.2 (φxB)
Assertion
Ref Expression
nfeqd (φ → Ⅎx A = B)

Proof of Theorem nfeqd
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2347 . 2 (A = By(y Ay B))
2 nfv 1619 . . 3 yφ
3 nfeqd.1 . . . . 5 (φxA)
43nfcrd 2503 . . . 4 (φ → Ⅎx y A)
5 nfeqd.2 . . . . 5 (φxB)
65nfcrd 2503 . . . 4 (φ → Ⅎx y B)
74, 6nfbid 1832 . . 3 (φ → Ⅎx(y Ay B))
82, 7nfald 1852 . 2 (φ → Ⅎxy(y Ay B))
91, 8nfxfrd 1571 1 (φ → Ⅎx A = B)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wnf 1544   = wceq 1642   wcel 1710  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-cleq 2346  df-nfc 2479
This theorem is referenced by:  nfeld  2505  nfned  2613  vtoclgft  2906  sbcralt  3119  csbiebt  3173  dfnfc2  3910  nfiotad  4343  iota2df  4366  dfid3  4769  oprabid  5551
  Copyright terms: Public domain W3C validator