New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfid3 | Unicode version |
Description: A stronger version of df-id 4768 that doesn't require and to be distinct. Ordinarily, we wouldn't use this as a definition, since non-distinct dummy variables would make soundness verification more difficult (as the proof here shows). The proof can be instructive in showing how distinct variable requirements may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
dfid3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 4768 | . 2 | |
2 | ancom 437 | . . . . . . . . . . 11 | |
3 | equcom 1680 | . . . . . . . . . . . 12 | |
4 | 3 | anbi1i 676 | . . . . . . . . . . 11 |
5 | 2, 4 | bitri 240 | . . . . . . . . . 10 |
6 | 5 | exbii 1582 | . . . . . . . . 9 |
7 | vex 2863 | . . . . . . . . . 10 | |
8 | opeq2 4580 | . . . . . . . . . . 11 | |
9 | 8 | eqeq2d 2364 | . . . . . . . . . 10 |
10 | 7, 9 | ceqsexv 2895 | . . . . . . . . 9 |
11 | equid 1676 | . . . . . . . . . 10 | |
12 | 11 | biantru 491 | . . . . . . . . 9 |
13 | 6, 10, 12 | 3bitri 262 | . . . . . . . 8 |
14 | 13 | exbii 1582 | . . . . . . 7 |
15 | nfe1 1732 | . . . . . . . 8 | |
16 | 15 | 19.9 1783 | . . . . . . 7 |
17 | 14, 16 | bitr4i 243 | . . . . . 6 |
18 | opeq2 4580 | . . . . . . . . . . 11 | |
19 | 18 | eqeq2d 2364 | . . . . . . . . . 10 |
20 | equequ2 1686 | . . . . . . . . . 10 | |
21 | 19, 20 | anbi12d 691 | . . . . . . . . 9 |
22 | 21 | sps 1754 | . . . . . . . 8 |
23 | 22 | drex1 1967 | . . . . . . 7 |
24 | 23 | drex2 1968 | . . . . . 6 |
25 | 17, 24 | syl5bb 248 | . . . . 5 |
26 | nfnae 1956 | . . . . . 6 | |
27 | nfnae 1956 | . . . . . . 7 | |
28 | nfcvd 2491 | . . . . . . . . 9 | |
29 | nfcvf2 2513 | . . . . . . . . . 10 | |
30 | nfcvd 2491 | . . . . . . . . . 10 | |
31 | 29, 30 | nfopd 4606 | . . . . . . . . 9 |
32 | 28, 31 | nfeqd 2504 | . . . . . . . 8 |
33 | 29, 30 | nfeqd 2504 | . . . . . . . 8 |
34 | 32, 33 | nfand 1822 | . . . . . . 7 |
35 | opeq2 4580 | . . . . . . . . . 10 | |
36 | 35 | eqeq2d 2364 | . . . . . . . . 9 |
37 | equequ2 1686 | . . . . . . . . 9 | |
38 | 36, 37 | anbi12d 691 | . . . . . . . 8 |
39 | 38 | a1i 10 | . . . . . . 7 |
40 | 27, 34, 39 | cbvexd 2009 | . . . . . 6 |
41 | 26, 40 | exbid 1773 | . . . . 5 |
42 | 25, 41 | pm2.61i 156 | . . . 4 |
43 | 42 | abbii 2466 | . . 3 |
44 | df-opab 4624 | . . 3 | |
45 | df-opab 4624 | . . 3 | |
46 | 43, 44, 45 | 3eqtr4i 2383 | . 2 |
47 | 1, 46 | eqtri 2373 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 cab 2339 cop 4562 copab 4623 cid 4764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-id 4768 |
This theorem is referenced by: dfid2 4770 opabresid 5004 |
Copyright terms: Public domain | W3C validator |