| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfid3 | Unicode version | ||
| Description: A stronger version of df-id 4768 that doesn't require  | 
| Ref | Expression | 
|---|---|
| dfid3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-id 4768 | 
. 2
 | |
| 2 | ancom 437 | 
. . . . . . . . . . 11
 | |
| 3 | equcom 1680 | 
. . . . . . . . . . . 12
 | |
| 4 | 3 | anbi1i 676 | 
. . . . . . . . . . 11
 | 
| 5 | 2, 4 | bitri 240 | 
. . . . . . . . . 10
 | 
| 6 | 5 | exbii 1582 | 
. . . . . . . . 9
 | 
| 7 | vex 2863 | 
. . . . . . . . . 10
 | |
| 8 | opeq2 4580 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | eqeq2d 2364 | 
. . . . . . . . . 10
 | 
| 10 | 7, 9 | ceqsexv 2895 | 
. . . . . . . . 9
 | 
| 11 | equid 1676 | 
. . . . . . . . . 10
 | |
| 12 | 11 | biantru 491 | 
. . . . . . . . 9
 | 
| 13 | 6, 10, 12 | 3bitri 262 | 
. . . . . . . 8
 | 
| 14 | 13 | exbii 1582 | 
. . . . . . 7
 | 
| 15 | nfe1 1732 | 
. . . . . . . 8
 | |
| 16 | 15 | 19.9 1783 | 
. . . . . . 7
 | 
| 17 | 14, 16 | bitr4i 243 | 
. . . . . 6
 | 
| 18 | opeq2 4580 | 
. . . . . . . . . . 11
 | |
| 19 | 18 | eqeq2d 2364 | 
. . . . . . . . . 10
 | 
| 20 | equequ2 1686 | 
. . . . . . . . . 10
 | |
| 21 | 19, 20 | anbi12d 691 | 
. . . . . . . . 9
 | 
| 22 | 21 | sps 1754 | 
. . . . . . . 8
 | 
| 23 | 22 | drex1 1967 | 
. . . . . . 7
 | 
| 24 | 23 | drex2 1968 | 
. . . . . 6
 | 
| 25 | 17, 24 | syl5bb 248 | 
. . . . 5
 | 
| 26 | nfnae 1956 | 
. . . . . 6
 | |
| 27 | nfnae 1956 | 
. . . . . . 7
 | |
| 28 | nfcvd 2491 | 
. . . . . . . . 9
 | |
| 29 | nfcvf2 2513 | 
. . . . . . . . . 10
 | |
| 30 | nfcvd 2491 | 
. . . . . . . . . 10
 | |
| 31 | 29, 30 | nfopd 4606 | 
. . . . . . . . 9
 | 
| 32 | 28, 31 | nfeqd 2504 | 
. . . . . . . 8
 | 
| 33 | 29, 30 | nfeqd 2504 | 
. . . . . . . 8
 | 
| 34 | 32, 33 | nfand 1822 | 
. . . . . . 7
 | 
| 35 | opeq2 4580 | 
. . . . . . . . . 10
 | |
| 36 | 35 | eqeq2d 2364 | 
. . . . . . . . 9
 | 
| 37 | equequ2 1686 | 
. . . . . . . . 9
 | |
| 38 | 36, 37 | anbi12d 691 | 
. . . . . . . 8
 | 
| 39 | 38 | a1i 10 | 
. . . . . . 7
 | 
| 40 | 27, 34, 39 | cbvexd 2009 | 
. . . . . 6
 | 
| 41 | 26, 40 | exbid 1773 | 
. . . . 5
 | 
| 42 | 25, 41 | pm2.61i 156 | 
. . . 4
 | 
| 43 | 42 | abbii 2466 | 
. . 3
 | 
| 44 | df-opab 4624 | 
. . 3
 | |
| 45 | df-opab 4624 | 
. . 3
 | |
| 46 | 43, 44, 45 | 3eqtr4i 2383 | 
. 2
 | 
| 47 | 1, 46 | eqtri 2373 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-id 4768 | 
| This theorem is referenced by: dfid2 4770 opabresid 5004 | 
| Copyright terms: Public domain | W3C validator |