NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfid3 Unicode version

Theorem dfid3 4769
Description: A stronger version of df-id 4768 that doesn't require and to be distinct. Ordinarily, we wouldn't use this as a definition, since non-distinct dummy variables would make soundness verification more difficult (as the proof here shows). The proof can be instructive in showing how distinct variable requirements may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
dfid3

Proof of Theorem dfid3
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 4768 . 2
2 ancom 437 . . . . . . . . . . 11
3 equcom 1680 . . . . . . . . . . . 12
43anbi1i 676 . . . . . . . . . . 11
52, 4bitri 240 . . . . . . . . . 10
65exbii 1582 . . . . . . . . 9
7 vex 2863 . . . . . . . . . 10
8 opeq2 4580 . . . . . . . . . . 11
98eqeq2d 2364 . . . . . . . . . 10
107, 9ceqsexv 2895 . . . . . . . . 9
11 equid 1676 . . . . . . . . . 10
1211biantru 491 . . . . . . . . 9
136, 10, 123bitri 262 . . . . . . . 8
1413exbii 1582 . . . . . . 7
15 nfe1 1732 . . . . . . . 8  F/
161519.9 1783 . . . . . . 7
1714, 16bitr4i 243 . . . . . 6
18 opeq2 4580 . . . . . . . . . . 11
1918eqeq2d 2364 . . . . . . . . . 10
20 equequ2 1686 . . . . . . . . . 10
2119, 20anbi12d 691 . . . . . . . . 9
2221sps 1754 . . . . . . . 8
2322drex1 1967 . . . . . . 7
2423drex2 1968 . . . . . 6
2517, 24syl5bb 248 . . . . 5
26 nfnae 1956 . . . . . 6  F/
27 nfnae 1956 . . . . . . 7  F/
28 nfcvd 2491 . . . . . . . . 9  F/_
29 nfcvf2 2513 . . . . . . . . . 10  F/_
30 nfcvd 2491 . . . . . . . . . 10  F/_
3129, 30nfopd 4606 . . . . . . . . 9  F/_
3228, 31nfeqd 2504 . . . . . . . 8  F/
3329, 30nfeqd 2504 . . . . . . . 8  F/
3432, 33nfand 1822 . . . . . . 7  F/
35 opeq2 4580 . . . . . . . . . 10
3635eqeq2d 2364 . . . . . . . . 9
37 equequ2 1686 . . . . . . . . 9
3836, 37anbi12d 691 . . . . . . . 8
3938a1i 10 . . . . . . 7
4027, 34, 39cbvexd 2009 . . . . . 6
4126, 40exbid 1773 . . . . 5
4225, 41pm2.61i 156 . . . 4
4342abbii 2466 . . 3
44 df-opab 4624 . . 3
45 df-opab 4624 . . 3
4643, 44, 453eqtr4i 2383 . 2
471, 46eqtri 2373 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540  wex 1541   wceq 1642  cab 2339  cop 4562  copab 4623   cid 4764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-id 4768
This theorem is referenced by:  dfid2  4770  opabresid  5004
  Copyright terms: Public domain W3C validator