New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ov6g | Unicode version |
Description: The value of an operation class abstraction. Special case. (Contributed by set.mm contributors, 13-Nov-2006.) |
Ref | Expression |
---|---|
ov6g.1 | |
ov6g.2 |
Ref | Expression |
---|---|
ov6g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5526 | . 2 | |
2 | eqid 2353 | . . . . . 6 | |
3 | biidd 228 | . . . . . . 7 | |
4 | 3 | copsex2g 4609 | . . . . . 6 |
5 | 2, 4 | mpbiri 224 | . . . . 5 |
6 | 5 | 3adant3 975 | . . . 4 |
7 | 6 | adantr 451 | . . 3 |
8 | eqeq1 2359 | . . . . . . . 8 | |
9 | 8 | anbi1d 685 | . . . . . . 7 |
10 | ov6g.1 | . . . . . . . . . 10 | |
11 | 10 | eqeq2d 2364 | . . . . . . . . 9 |
12 | 11 | eqcoms 2356 | . . . . . . . 8 |
13 | 12 | pm5.32i 618 | . . . . . . 7 |
14 | 9, 13 | syl6bb 252 | . . . . . 6 |
15 | 14 | 2exbidv 1628 | . . . . 5 |
16 | eqeq1 2359 | . . . . . . 7 | |
17 | 16 | anbi2d 684 | . . . . . 6 |
18 | 17 | 2exbidv 1628 | . . . . 5 |
19 | moeq 3012 | . . . . . . 7 | |
20 | 19 | mosubop 4613 | . . . . . 6 |
21 | 20 | a1i 10 | . . . . 5 |
22 | ov6g.2 | . . . . . 6 | |
23 | dfoprab2 5558 | . . . . . 6 | |
24 | eleq1 2413 | . . . . . . . . . . . 12 | |
25 | 24 | anbi1d 685 | . . . . . . . . . . 11 |
26 | 25 | pm5.32i 618 | . . . . . . . . . 10 |
27 | an12 772 | . . . . . . . . . 10 | |
28 | 26, 27 | bitr3i 242 | . . . . . . . . 9 |
29 | 28 | 2exbii 1583 | . . . . . . . 8 |
30 | 19.42vv 1907 | . . . . . . . 8 | |
31 | 29, 30 | bitri 240 | . . . . . . 7 |
32 | 31 | opabbii 4626 | . . . . . 6 |
33 | 22, 23, 32 | 3eqtri 2377 | . . . . 5 |
34 | 15, 18, 21, 33 | fvopab3ig 5387 | . . . 4 |
35 | 34 | 3ad2antl3 1119 | . . 3 |
36 | 7, 35 | mpd 14 | . 2 |
37 | 1, 36 | syl5eq 2397 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 wmo 2205 cop 4561 copab 4622 cfv 4781 (class class class)co 5525 coprab 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fv 4795 df-ov 5526 df-oprab 5528 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |