Proof of Theorem phiall
Step | Hyp | Ref
| Expression |
1 | | neldifsn 3841 |
. . . . 5
0c
 0c  |
2 | | phiall.1 |
. . . . . . 7
 |
3 | | snex 4111 |
. . . . . . 7
0c  |
4 | 2, 3 | difex 4107 |
. . . . . 6
 0c  |
5 | 4 | phialllem2 4617 |
. . . . 5
 0c  0c    0c Phi   |
6 | 1, 5 | ax-mp 8 |
. . . 4
  
0c Phi  |
7 | | disjsn 3786 |
. . . . . . . . . 10
   0c 0c 0c  0c   |
8 | 1, 7 | mpbir 200 |
. . . . . . . . 9
  0c 0c  |
9 | | 0cnelphi 4597 |
. . . . . . . . . 10
0c
Phi  |
10 | | disjsn 3786 |
. . . . . . . . . 10
 Phi 0c 0c
Phi   |
11 | 9, 10 | mpbir 200 |
. . . . . . . . 9
Phi
0c
 |
12 | 8, 11 | eqtr4i 2376 |
. . . . . . . 8
  0c 0c Phi 0c  |
13 | 12 | biantru 491 |
. . . . . . 7
   0c 0c Phi 0c    0c 0c Phi 0c   0c 0c Phi 0c    |
14 | | unineq 3505 |
. . . . . . 7
    0c
0c Phi 0c  
0c 0c Phi 0c   0c Phi
  |
15 | 13, 14 | bitri 240 |
. . . . . 6
   0c 0c Phi 0c  0c
Phi   |
16 | | difsnid 3854 |
. . . . . . 7
0c   0c
0c   |
17 | 16 | eqeq1d 2361 |
. . . . . 6
0c    0c 0c
Phi 0c Phi
0c    |
18 | 15, 17 | syl5bbr 250 |
. . . . 5
0c   0c
Phi Phi 0c    |
19 | 18 | exbidv 1626 |
. . . 4
0c     0c Phi 
Phi 0c    |
20 | 6, 19 | mpbii 202 |
. . 3
0c  Phi 0c   |
21 | | olc 373 |
. . . 4
 Phi 0c  Phi
Phi 0c    |
22 | 21 | eximi 1576 |
. . 3
 
Phi 0c   
Phi Phi 0c    |
23 | 20, 22 | syl 15 |
. 2
0c    Phi Phi 0c    |
24 | 2 | phialllem2 4617 |
. . 3
 0c 
Phi   |
25 | | orc 374 |
. . . 4
 Phi  Phi
Phi 0c    |
26 | 25 | eximi 1576 |
. . 3
 
Phi   
Phi Phi 0c    |
27 | 24, 26 | syl 15 |
. 2
 0c   
Phi Phi 0c    |
28 | 23, 27 | pm2.61i 156 |
1
  
Phi Phi 0c   |