| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > unineq | Unicode version | ||
| Description: Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| unineq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2414 |
. . . . . . 7
| |
| 2 | elin 3220 |
. . . . . . 7
| |
| 3 | elin 3220 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | 3bitr3g 278 |
. . . . . 6
|
| 5 | iba 489 |
. . . . . . 7
| |
| 6 | iba 489 |
. . . . . . 7
| |
| 7 | 5, 6 | bibi12d 312 |
. . . . . 6
|
| 8 | 4, 7 | syl5ibr 212 |
. . . . 5
|
| 9 | 8 | adantld 453 |
. . . 4
|
| 10 | uncom 3409 |
. . . . . . . . 9
| |
| 11 | uncom 3409 |
. . . . . . . . 9
| |
| 12 | 10, 11 | eqeq12i 2366 |
. . . . . . . 8
|
| 13 | eleq2 2414 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylbi 187 |
. . . . . . 7
|
| 15 | elun 3221 |
. . . . . . 7
| |
| 16 | elun 3221 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | 3bitr3g 278 |
. . . . . 6
|
| 18 | biorf 394 |
. . . . . . 7
| |
| 19 | biorf 394 |
. . . . . . 7
| |
| 20 | 18, 19 | bibi12d 312 |
. . . . . 6
|
| 21 | 17, 20 | syl5ibr 212 |
. . . . 5
|
| 22 | 21 | adantrd 454 |
. . . 4
|
| 23 | 9, 22 | pm2.61i 156 |
. . 3
|
| 24 | 23 | eqrdv 2351 |
. 2
|
| 25 | uneq1 3412 |
. . 3
| |
| 26 | ineq1 3451 |
. . 3
| |
| 27 | 25, 26 | jca 518 |
. 2
|
| 28 | 24, 27 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 |
| This theorem is referenced by: phiall 4619 |
| Copyright terms: Public domain | W3C validator |