New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unineq | Unicode version |
Description: Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
unineq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . . . . 7 | |
2 | elin 3220 | . . . . . . 7 | |
3 | elin 3220 | . . . . . . 7 | |
4 | 1, 2, 3 | 3bitr3g 278 | . . . . . 6 |
5 | iba 489 | . . . . . . 7 | |
6 | iba 489 | . . . . . . 7 | |
7 | 5, 6 | bibi12d 312 | . . . . . 6 |
8 | 4, 7 | syl5ibr 212 | . . . . 5 |
9 | 8 | adantld 453 | . . . 4 |
10 | uncom 3409 | . . . . . . . . 9 | |
11 | uncom 3409 | . . . . . . . . 9 | |
12 | 10, 11 | eqeq12i 2366 | . . . . . . . 8 |
13 | eleq2 2414 | . . . . . . . 8 | |
14 | 12, 13 | sylbi 187 | . . . . . . 7 |
15 | elun 3221 | . . . . . . 7 | |
16 | elun 3221 | . . . . . . 7 | |
17 | 14, 15, 16 | 3bitr3g 278 | . . . . . 6 |
18 | biorf 394 | . . . . . . 7 | |
19 | biorf 394 | . . . . . . 7 | |
20 | 18, 19 | bibi12d 312 | . . . . . 6 |
21 | 17, 20 | syl5ibr 212 | . . . . 5 |
22 | 21 | adantrd 454 | . . . 4 |
23 | 9, 22 | pm2.61i 156 | . . 3 |
24 | 23 | eqrdv 2351 | . 2 |
25 | uneq1 3412 | . . 3 | |
26 | ineq1 3451 | . . 3 | |
27 | 25, 26 | jca 518 | . 2 |
28 | 24, 27 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 cun 3208 cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 |
This theorem is referenced by: phiall 4619 |
Copyright terms: Public domain | W3C validator |