Proof of Theorem preq12b
Step | Hyp | Ref
| Expression |
1 | | preq12b.1 |
. . . . . 6
⊢ A ∈
V |
2 | 1 | prid1 3828 |
. . . . 5
⊢ A ∈ {A, B} |
3 | | eleq2 2414 |
. . . . 5
⊢ ({A, B} =
{C, D}
→ (A ∈ {A, B} ↔ A
∈ {C,
D})) |
4 | 2, 3 | mpbii 202 |
. . . 4
⊢ ({A, B} =
{C, D}
→ A ∈ {C, D}) |
5 | 1 | elpr 3752 |
. . . 4
⊢ (A ∈ {C, D} ↔
(A = C
∨ A =
D)) |
6 | 4, 5 | sylib 188 |
. . 3
⊢ ({A, B} =
{C, D}
→ (A = C ∨ A = D)) |
7 | | preq1 3800 |
. . . . . . . 8
⊢ (A = C →
{A, B}
= {C, B}) |
8 | 7 | eqeq1d 2361 |
. . . . . . 7
⊢ (A = C →
({A, B}
= {C, D} ↔ {C,
B} = {C, D})) |
9 | | preq12b.2 |
. . . . . . . 8
⊢ B ∈
V |
10 | | preq12b.4 |
. . . . . . . 8
⊢ D ∈
V |
11 | 9, 10 | preqr2 4126 |
. . . . . . 7
⊢ ({C, B} =
{C, D}
→ B = D) |
12 | 8, 11 | syl6bi 219 |
. . . . . 6
⊢ (A = C →
({A, B}
= {C, D} → B =
D)) |
13 | 12 | com12 27 |
. . . . 5
⊢ ({A, B} =
{C, D}
→ (A = C → B =
D)) |
14 | 13 | ancld 536 |
. . . 4
⊢ ({A, B} =
{C, D}
→ (A = C → (A =
C ∧
B = D))) |
15 | | prcom 3799 |
. . . . . . 7
⊢ {C, D} =
{D, C} |
16 | 15 | eqeq2i 2363 |
. . . . . 6
⊢ ({A, B} =
{C, D}
↔ {A, B} = {D,
C}) |
17 | | preq1 3800 |
. . . . . . . . 9
⊢ (A = D →
{A, B}
= {D, B}) |
18 | 17 | eqeq1d 2361 |
. . . . . . . 8
⊢ (A = D →
({A, B}
= {D, C} ↔ {D,
B} = {D, C})) |
19 | | preq12b.3 |
. . . . . . . . 9
⊢ C ∈
V |
20 | 9, 19 | preqr2 4126 |
. . . . . . . 8
⊢ ({D, B} =
{D, C}
→ B = C) |
21 | 18, 20 | syl6bi 219 |
. . . . . . 7
⊢ (A = D →
({A, B}
= {D, C} → B =
C)) |
22 | 21 | com12 27 |
. . . . . 6
⊢ ({A, B} =
{D, C}
→ (A = D → B =
C)) |
23 | 16, 22 | sylbi 187 |
. . . . 5
⊢ ({A, B} =
{C, D}
→ (A = D → B =
C)) |
24 | 23 | ancld 536 |
. . . 4
⊢ ({A, B} =
{C, D}
→ (A = D → (A =
D ∧
B = C))) |
25 | 14, 24 | orim12d 811 |
. . 3
⊢ ({A, B} =
{C, D}
→ ((A = C ∨ A = D) →
((A = C
∧ B =
D) ∨
(A = D
∧ B =
C)))) |
26 | 6, 25 | mpd 14 |
. 2
⊢ ({A, B} =
{C, D}
→ ((A = C ∧ B = D) ∨ (A = D ∧ B = C))) |
27 | | preq12 3802 |
. . 3
⊢ ((A = C ∧ B = D) → {A,
B} = {C, D}) |
28 | | prcom 3799 |
. . . . 5
⊢ {D, B} =
{B, D} |
29 | 17, 28 | syl6eq 2401 |
. . . 4
⊢ (A = D →
{A, B}
= {B, D}) |
30 | | preq1 3800 |
. . . 4
⊢ (B = C →
{B, D}
= {C, D}) |
31 | 29, 30 | sylan9eq 2405 |
. . 3
⊢ ((A = D ∧ B = C) → {A,
B} = {C, D}) |
32 | 27, 31 | jaoi 368 |
. 2
⊢ (((A = C ∧ B = D) ∨ (A = D ∧ B = C)) → {A,
B} = {C, D}) |
33 | 26, 32 | impbii 180 |
1
⊢ ({A, B} =
{C, D}
↔ ((A = C ∧ B = D) ∨ (A = D ∧ B = C))) |