New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralcom2 | Unicode version |
Description: Commutation of restricted quantifiers. Note that and needn't be distinct (this makes the proof longer). (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralcom2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . . . . . 7 | |
2 | 1 | sps 1754 | . . . . . 6 |
3 | 2 | imbi1d 308 | . . . . . . . . 9 |
4 | 3 | dral1 1965 | . . . . . . . 8 |
5 | 4 | bicomd 192 | . . . . . . 7 |
6 | df-ral 2620 | . . . . . . 7 | |
7 | df-ral 2620 | . . . . . . 7 | |
8 | 5, 6, 7 | 3bitr4g 279 | . . . . . 6 |
9 | 2, 8 | imbi12d 311 | . . . . 5 |
10 | 9 | dral1 1965 | . . . 4 |
11 | df-ral 2620 | . . . 4 | |
12 | df-ral 2620 | . . . 4 | |
13 | 10, 11, 12 | 3bitr4g 279 | . . 3 |
14 | 13 | biimpd 198 | . 2 |
15 | nfnae 1956 | . . . . 5 | |
16 | nfra2 2669 | . . . . 5 | |
17 | 15, 16 | nfan 1824 | . . . 4 |
18 | nfnae 1956 | . . . . . . . 8 | |
19 | nfra1 2665 | . . . . . . . 8 | |
20 | 18, 19 | nfan 1824 | . . . . . . 7 |
21 | nfcvf 2512 | . . . . . . . . 9 | |
22 | 21 | adantr 451 | . . . . . . . 8 |
23 | nfcvd 2491 | . . . . . . . 8 | |
24 | 22, 23 | nfeld 2505 | . . . . . . 7 |
25 | 20, 24 | nfan1 1881 | . . . . . 6 |
26 | rsp2 2677 | . . . . . . . . 9 | |
27 | 26 | ancomsd 440 | . . . . . . . 8 |
28 | 27 | expdimp 426 | . . . . . . 7 |
29 | 28 | adantll 694 | . . . . . 6 |
30 | 25, 29 | ralrimi 2696 | . . . . 5 |
31 | 30 | ex 423 | . . . 4 |
32 | 17, 31 | ralrimi 2696 | . . 3 |
33 | 32 | ex 423 | . 2 |
34 | 14, 33 | pm2.61i 156 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wceq 1642 wcel 1710 wnfc 2477 wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |