NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reu2 Unicode version

Theorem reu2 3025
Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
reu2
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem reu2
StepHypRef Expression
1 nfv 1619 . . 3  F/
21eu2 2229 . 2
3 df-reu 2622 . 2
4 df-rex 2621 . . 3
5 df-ral 2620 . . . 4
6 19.21v 1890 . . . . . 6
7 nfv 1619 . . . . . . . . . . . . 13  F/
8 nfs1v 2106 . . . . . . . . . . . . 13  F/
97, 8nfan 1824 . . . . . . . . . . . 12  F/
10 eleq1 2413 . . . . . . . . . . . . 13
11 sbequ12 1919 . . . . . . . . . . . . 13
1210, 11anbi12d 691 . . . . . . . . . . . 12
139, 12sbie 2038 . . . . . . . . . . 11
1413anbi2i 675 . . . . . . . . . 10
15 an4 797 . . . . . . . . . 10
1614, 15bitri 240 . . . . . . . . 9
1716imbi1i 315 . . . . . . . 8
18 impexp 433 . . . . . . . 8
19 impexp 433 . . . . . . . 8
2017, 18, 193bitri 262 . . . . . . 7
2120albii 1566 . . . . . 6
22 df-ral 2620 . . . . . . 7
2322imbi2i 303 . . . . . 6
246, 21, 233bitr4i 268 . . . . 5
2524albii 1566 . . . 4
265, 25bitr4i 243 . . 3
274, 26anbi12i 678 . 2
282, 3, 273bitr4i 268 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540  wex 1541   wceq 1642  wsb 1648   wcel 1710  weu 2204  wral 2615  wrex 2616  wreu 2617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-cleq 2346  df-clel 2349  df-ral 2620  df-rex 2621  df-reu 2622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator