| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > reu2 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| reu2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1619 | 
. . 3
 | |
| 2 | 1 | eu2 2229 | 
. 2
 | 
| 3 | df-reu 2622 | 
. 2
 | |
| 4 | df-rex 2621 | 
. . 3
 | |
| 5 | df-ral 2620 | 
. . . 4
 | |
| 6 | 19.21v 1890 | 
. . . . . 6
 | |
| 7 | nfv 1619 | 
. . . . . . . . . . . . 13
 | |
| 8 | nfs1v 2106 | 
. . . . . . . . . . . . 13
 | |
| 9 | 7, 8 | nfan 1824 | 
. . . . . . . . . . . 12
 | 
| 10 | eleq1 2413 | 
. . . . . . . . . . . . 13
 | |
| 11 | sbequ12 1919 | 
. . . . . . . . . . . . 13
 | |
| 12 | 10, 11 | anbi12d 691 | 
. . . . . . . . . . . 12
 | 
| 13 | 9, 12 | sbie 2038 | 
. . . . . . . . . . 11
 | 
| 14 | 13 | anbi2i 675 | 
. . . . . . . . . 10
 | 
| 15 | an4 797 | 
. . . . . . . . . 10
 | |
| 16 | 14, 15 | bitri 240 | 
. . . . . . . . 9
 | 
| 17 | 16 | imbi1i 315 | 
. . . . . . . 8
 | 
| 18 | impexp 433 | 
. . . . . . . 8
 | |
| 19 | impexp 433 | 
. . . . . . . 8
 | |
| 20 | 17, 18, 19 | 3bitri 262 | 
. . . . . . 7
 | 
| 21 | 20 | albii 1566 | 
. . . . . 6
 | 
| 22 | df-ral 2620 | 
. . . . . . 7
 | |
| 23 | 22 | imbi2i 303 | 
. . . . . 6
 | 
| 24 | 6, 21, 23 | 3bitr4i 268 | 
. . . . 5
 | 
| 25 | 24 | albii 1566 | 
. . . 4
 | 
| 26 | 5, 25 | bitr4i 243 | 
. . 3
 | 
| 27 | 4, 26 | anbi12i 678 | 
. 2
 | 
| 28 | 2, 3, 27 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |