New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu2 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
reu2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 | |
2 | 1 | eu2 2229 | . 2 |
3 | df-reu 2622 | . 2 | |
4 | df-rex 2621 | . . 3 | |
5 | df-ral 2620 | . . . 4 | |
6 | 19.21v 1890 | . . . . . 6 | |
7 | nfv 1619 | . . . . . . . . . . . . 13 | |
8 | nfs1v 2106 | . . . . . . . . . . . . 13 | |
9 | 7, 8 | nfan 1824 | . . . . . . . . . . . 12 |
10 | eleq1 2413 | . . . . . . . . . . . . 13 | |
11 | sbequ12 1919 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | anbi12d 691 | . . . . . . . . . . . 12 |
13 | 9, 12 | sbie 2038 | . . . . . . . . . . 11 |
14 | 13 | anbi2i 675 | . . . . . . . . . 10 |
15 | an4 797 | . . . . . . . . . 10 | |
16 | 14, 15 | bitri 240 | . . . . . . . . 9 |
17 | 16 | imbi1i 315 | . . . . . . . 8 |
18 | impexp 433 | . . . . . . . 8 | |
19 | impexp 433 | . . . . . . . 8 | |
20 | 17, 18, 19 | 3bitri 262 | . . . . . . 7 |
21 | 20 | albii 1566 | . . . . . 6 |
22 | df-ral 2620 | . . . . . . 7 | |
23 | 22 | imbi2i 303 | . . . . . 6 |
24 | 6, 21, 23 | 3bitr4i 268 | . . . . 5 |
25 | 24 | albii 1566 | . . . 4 |
26 | 5, 25 | bitr4i 243 | . . 3 |
27 | 4, 26 | anbi12i 678 | . 2 |
28 | 2, 3, 27 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wsb 1648 wcel 1710 weu 2204 wral 2615 wrex 2616 wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |