Proof of Theorem reu2
Step | Hyp | Ref
| Expression |
1 | | nfv 1619 |
. . 3
⊢ Ⅎy(x ∈ A ∧ φ) |
2 | 1 | eu2 2229 |
. 2
⊢ (∃!x(x ∈ A ∧ φ) ↔ (∃x(x ∈ A ∧ φ) ∧ ∀x∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y))) |
3 | | df-reu 2622 |
. 2
⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) |
4 | | df-rex 2621 |
. . 3
⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) |
5 | | df-ral 2620 |
. . . 4
⊢ (∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y)
↔ ∀x(x ∈ A →
∀y
∈ A
((φ ∧
[y / x]φ) →
x = y))) |
6 | | 19.21v 1890 |
. . . . . 6
⊢ (∀y(x ∈ A → (y
∈ A
→ ((φ ∧ [y / x]φ) →
x = y))) ↔ (x
∈ A
→ ∀y(y ∈ A →
((φ ∧
[y / x]φ) →
x = y)))) |
7 | | nfv 1619 |
. . . . . . . . . . . . 13
⊢ Ⅎx y ∈ A |
8 | | nfs1v 2106 |
. . . . . . . . . . . . 13
⊢ Ⅎx[y / x]φ |
9 | 7, 8 | nfan 1824 |
. . . . . . . . . . . 12
⊢ Ⅎx(y ∈ A ∧ [y / x]φ) |
10 | | eleq1 2413 |
. . . . . . . . . . . . 13
⊢ (x = y →
(x ∈
A ↔ y ∈ A)) |
11 | | sbequ12 1919 |
. . . . . . . . . . . . 13
⊢ (x = y →
(φ ↔ [y / x]φ)) |
12 | 10, 11 | anbi12d 691 |
. . . . . . . . . . . 12
⊢ (x = y →
((x ∈
A ∧ φ) ↔ (y ∈ A ∧ [y / x]φ))) |
13 | 9, 12 | sbie 2038 |
. . . . . . . . . . 11
⊢ ([y / x](x ∈ A ∧ φ) ↔ (y ∈ A ∧ [y / x]φ)) |
14 | 13 | anbi2i 675 |
. . . . . . . . . 10
⊢ (((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) ↔
((x ∈
A ∧ φ) ∧
(y ∈
A ∧
[y / x]φ))) |
15 | | an4 797 |
. . . . . . . . . 10
⊢ (((x ∈ A ∧ φ) ∧
(y ∈
A ∧
[y / x]φ)) ↔
((x ∈
A ∧
y ∈
A) ∧
(φ ∧
[y / x]φ))) |
16 | 14, 15 | bitri 240 |
. . . . . . . . 9
⊢ (((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) ↔
((x ∈
A ∧
y ∈
A) ∧
(φ ∧
[y / x]φ))) |
17 | 16 | imbi1i 315 |
. . . . . . . 8
⊢ ((((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ (((x ∈ A ∧ y ∈ A) ∧ (φ ∧ [y / x]φ)) →
x = y)) |
18 | | impexp 433 |
. . . . . . . 8
⊢ ((((x ∈ A ∧ y ∈ A) ∧ (φ ∧
[y / x]φ)) →
x = y)
↔ ((x ∈ A ∧ y ∈ A) →
((φ ∧
[y / x]φ) →
x = y))) |
19 | | impexp 433 |
. . . . . . . 8
⊢ (((x ∈ A ∧ y ∈ A) → ((φ ∧
[y / x]φ) →
x = y))
↔ (x ∈ A →
(y ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
20 | 17, 18, 19 | 3bitri 262 |
. . . . . . 7
⊢ ((((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ (x ∈ A →
(y ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
21 | 20 | albii 1566 |
. . . . . 6
⊢ (∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ ∀y(x ∈ A →
(y ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
22 | | df-ral 2620 |
. . . . . . 7
⊢ (∀y ∈ A ((φ ∧
[y / x]φ) →
x = y)
↔ ∀y(y ∈ A →
((φ ∧
[y / x]φ) →
x = y))) |
23 | 22 | imbi2i 303 |
. . . . . 6
⊢ ((x ∈ A → ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y))
↔ (x ∈ A →
∀y(y ∈ A →
((φ ∧
[y / x]φ) →
x = y)))) |
24 | 6, 21, 23 | 3bitr4i 268 |
. . . . 5
⊢ (∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ (x ∈ A →
∀y
∈ A
((φ ∧
[y / x]φ) →
x = y))) |
25 | 24 | albii 1566 |
. . . 4
⊢ (∀x∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ ∀x(x ∈ A →
∀y
∈ A
((φ ∧
[y / x]φ) →
x = y))) |
26 | 5, 25 | bitr4i 243 |
. . 3
⊢ (∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y)
↔ ∀x∀y(((x ∈ A ∧ φ) ∧ [y / x](x ∈ A ∧ φ)) →
x = y)) |
27 | 4, 26 | anbi12i 678 |
. 2
⊢ ((∃x ∈ A φ ∧ ∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y))
↔ (∃x(x ∈ A ∧ φ) ∧ ∀x∀y(((x ∈ A ∧ φ) ∧ [y / x](x ∈ A ∧ φ)) →
x = y))) |
28 | 2, 3, 27 | 3bitr4i 268 |
1
⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y))) |