| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbhypf | GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3172. (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 | ⊢ Ⅎxψ |
| sbhypf.2 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| sbhypf | ⊢ (y = A → ([y / x]φ ↔ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2863 | . . 3 ⊢ y ∈ V | |
| 2 | eqeq1 2359 | . . 3 ⊢ (x = y → (x = A ↔ y = A)) | |
| 3 | 1, 2 | ceqsexv 2895 | . 2 ⊢ (∃x(x = y ∧ x = A) ↔ y = A) |
| 4 | nfs1v 2106 | . . . 4 ⊢ Ⅎx[y / x]φ | |
| 5 | sbhypf.1 | . . . 4 ⊢ Ⅎxψ | |
| 6 | 4, 5 | nfbi 1834 | . . 3 ⊢ Ⅎx([y / x]φ ↔ ψ) |
| 7 | sbequ12 1919 | . . . . 5 ⊢ (x = y → (φ ↔ [y / x]φ)) | |
| 8 | 7 | bicomd 192 | . . . 4 ⊢ (x = y → ([y / x]φ ↔ φ)) |
| 9 | sbhypf.2 | . . . 4 ⊢ (x = A → (φ ↔ ψ)) | |
| 10 | 8, 9 | sylan9bb 680 | . . 3 ⊢ ((x = y ∧ x = A) → ([y / x]φ ↔ ψ)) |
| 11 | 6, 10 | exlimi 1803 | . 2 ⊢ (∃x(x = y ∧ x = A) → ([y / x]φ ↔ ψ)) |
| 12 | 3, 11 | sylbir 204 | 1 ⊢ (y = A → ([y / x]φ ↔ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: mob2 3017 ralxpf 4828 |
| Copyright terms: Public domain | W3C validator |