Step | Hyp | Ref
| Expression |
1 | | n0 3560 |
. . 3
|
2 | | nncaddccl 4420 |
. . . . . . . 8
Nn Nn Nn |
3 | | tfincl 4493 |
. . . . . . . 8
Nn Tfin Nn |
4 | 2, 3 | syl 15 |
. . . . . . 7
Nn Nn Tfin
Nn |
5 | 4 | 3adant3 975 |
. . . . . 6
Nn Nn Tfin
Nn |
6 | | tfincl 4493 |
. . . . . . . 8
Nn Tfin Nn |
7 | | tfincl 4493 |
. . . . . . . 8
Nn Tfin Nn |
8 | | nncaddccl 4420 |
. . . . . . . 8
Tfin
Nn Tfin
Nn Tfin Tfin
Nn |
9 | 6, 7, 8 | syl2an 463 |
. . . . . . 7
Nn Nn Tfin Tfin
Nn |
10 | 9 | 3adant3 975 |
. . . . . 6
Nn Nn Tfin Tfin
Nn |
11 | 2 | 3adant3 975 |
. . . . . . 7
Nn Nn Nn |
12 | | simp3 957 |
. . . . . . 7
Nn Nn |
13 | | tfinpw1 4495 |
. . . . . . 7
Nn
1
Tfin
|
14 | 11, 12, 13 | syl2anc 642 |
. . . . . 6
Nn Nn 1 Tfin
|
15 | | eladdc 4399 |
. . . . . . . 8
|
16 | | simplll 734 |
. . . . . . . . . . . . 13
Nn Nn
Nn |
17 | | simplrl 736 |
. . . . . . . . . . . . 13
Nn Nn
|
18 | | tfinpw1 4495 |
. . . . . . . . . . . . 13
Nn 1
Tfin |
19 | 16, 17, 18 | syl2anc 642 |
. . . . . . . . . . . 12
Nn Nn
1 Tfin
|
20 | | simpllr 735 |
. . . . . . . . . . . . 13
Nn Nn
Nn |
21 | | simplrr 737 |
. . . . . . . . . . . . 13
Nn Nn
|
22 | | tfinpw1 4495 |
. . . . . . . . . . . . 13
Nn 1
Tfin |
23 | 20, 21, 22 | syl2anc 642 |
. . . . . . . . . . . 12
Nn Nn
1 Tfin
|
24 | | pw1eq 4144 |
. . . . . . . . . . . . . 14
1 1 |
25 | | pw1in 4165 |
. . . . . . . . . . . . . 14
1 1
1 |
26 | | pw10 4162 |
. . . . . . . . . . . . . 14
1 |
27 | 24, 25, 26 | 3eqtr3g 2408 |
. . . . . . . . . . . . 13
1 1 |
28 | 27 | adantl 452 |
. . . . . . . . . . . 12
Nn Nn
1 1 |
29 | | eladdci 4400 |
. . . . . . . . . . . 12
1
Tfin 1
Tfin 1 1 1 1 Tfin
Tfin |
30 | 19, 23, 28, 29 | syl3anc 1182 |
. . . . . . . . . . 11
Nn Nn
1 1 Tfin Tfin |
31 | | pw1eq 4144 |
. . . . . . . . . . . . 13
1 1 |
32 | | pw1un 4164 |
. . . . . . . . . . . . 13
1 1
1 |
33 | 31, 32 | syl6eq 2401 |
. . . . . . . . . . . 12
1 1 1 |
34 | 33 | eleq1d 2419 |
. . . . . . . . . . 11
1 Tfin Tfin 1
1 Tfin Tfin |
35 | 30, 34 | syl5ibrcom 213 |
. . . . . . . . . 10
Nn Nn
1 Tfin Tfin |
36 | 35 | expimpd 586 |
. . . . . . . . 9
Nn Nn 1
Tfin Tfin |
37 | 36 | rexlimdvva 2746 |
. . . . . . . 8
Nn Nn
1
Tfin Tfin |
38 | 15, 37 | syl5bi 208 |
. . . . . . 7
Nn Nn
1 Tfin Tfin |
39 | 38 | 3impia 1148 |
. . . . . 6
Nn Nn 1 Tfin Tfin |
40 | | nnceleq 4431 |
. . . . . 6
Tfin Nn Tfin Tfin
Nn 1
Tfin 1
Tfin Tfin Tfin
Tfin Tfin |
41 | 5, 10, 14, 39, 40 | syl22anc 1183 |
. . . . 5
Nn Nn Tfin
Tfin Tfin |
42 | 41 | 3expia 1153 |
. . . 4
Nn Nn
Tfin
Tfin Tfin |
43 | 42 | exlimdv 1636 |
. . 3
Nn Nn
Tfin
Tfin
Tfin |
44 | 1, 43 | syl5bi 208 |
. 2
Nn Nn
Tfin
Tfin Tfin |
45 | 44 | 3impia 1148 |
1
Nn Nn
Tfin Tfin
Tfin |