| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > tfinpw1 | Unicode version | ||
| Description: The finite T operator on a natural contains the unit power class of any element of the natural. Theorem X.1.31 of [Rosser] p. 528. (Contributed by SF, 24-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| tfinpw1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ne0i 3557 | 
. . 3
 | |
| 2 | tfinprop 4490 | 
. . 3
 | |
| 3 | 1, 2 | sylan2 460 | 
. 2
 | 
| 4 | ncfinraise 4482 | 
. . . . . . . 8
 | |
| 5 | 4 | 3expa 1151 | 
. . . . . . 7
 | 
| 6 | 5 | adantrr 697 | 
. . . . . 6
 | 
| 7 | simp3rl 1028 | 
. . . . . . . . . 10
 | |
| 8 | simp3l 983 | 
. . . . . . . . . . 11
 | |
| 9 | simp1l 979 | 
. . . . . . . . . . . 12
 | |
| 10 | tfincl 4493 | 
. . . . . . . . . . . 12
 | |
| 11 | 9, 10 | syl 15 | 
. . . . . . . . . . 11
 | 
| 12 | simp3rr 1029 | 
. . . . . . . . . . 11
 | |
| 13 | simp2r 982 | 
. . . . . . . . . . 11
 | |
| 14 | nnceleq 4431 | 
. . . . . . . . . . 11
 | |
| 15 | 8, 11, 12, 13, 14 | syl22anc 1183 | 
. . . . . . . . . 10
 | 
| 16 | 7, 15 | eleqtrd 2429 | 
. . . . . . . . 9
 | 
| 17 | 16 | 3expa 1151 | 
. . . . . . . 8
 | 
| 18 | 17 | expr 598 | 
. . . . . . 7
 | 
| 19 | 18 | rexlimdva 2739 | 
. . . . . 6
 | 
| 20 | 6, 19 | mpd 14 | 
. . . . 5
 | 
| 21 | 20 | expr 598 | 
. . . 4
 | 
| 22 | 21 | rexlimdva 2739 | 
. . 3
 | 
| 23 | 22 | adantld 453 | 
. 2
 | 
| 24 | 3, 23 | mpd 14 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-tfin 4444 | 
| This theorem is referenced by: ncfintfin 4496 tfindi 4497 tfin0c 4498 tfinsuc 4499 sfintfin 4533 sfinltfin 4536 vfinspsslem1 4551 | 
| Copyright terms: Public domain | W3C validator |