New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  uneqin Unicode version

Theorem uneqin 3506
 Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 3323 . . . 4
2 unss 3437 . . . . 5
3 ssin 3477 . . . . . . 7
4 sstr 3280 . . . . . . 7
53, 4sylbir 204 . . . . . 6
6 ssin 3477 . . . . . . 7
7 simpl 443 . . . . . . 7
86, 7sylbir 204 . . . . . 6
95, 8anim12i 549 . . . . 5
102, 9sylbir 204 . . . 4
111, 10syl 15 . . 3
12 eqss 3287 . . 3
1311, 12sylibr 203 . 2
14 unidm 3407 . . . 4
15 inidm 3464 . . . 4
1614, 15eqtr4i 2376 . . 3
17 uneq2 3412 . . 3
18 ineq2 3451 . . 3
1916, 17, 183eqtr3a 2409 . 2
2013, 19impbii 180 1
 Colors of variables: wff setvar class Syntax hints:   wb 176   wa 358   wceq 1642   cun 3207   cin 3208   wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-ss 3259 This theorem is referenced by:  uniintsn  3963
 Copyright terms: Public domain W3C validator