NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unipw GIF version

Theorem unipw 4118
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (The proof was shortened by Alan Sare, 28-Dec-2008.) (Contributed by SF, 14-Oct-1996.) (Revised by SF, 29-Dec-2008.)
Assertion
Ref Expression
unipw A = A

Proof of Theorem unipw
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3895 . . . 4 (x Ay(x y y A))
2 vex 2863 . . . . . . . 8 y V
32elpw 3729 . . . . . . 7 (y Ay A)
4 ssel 3268 . . . . . . 7 (y A → (x yx A))
53, 4sylbi 187 . . . . . 6 (y A → (x yx A))
65impcom 419 . . . . 5 ((x y y A) → x A)
76exlimiv 1634 . . . 4 (y(x y y A) → x A)
81, 7sylbi 187 . . 3 (x Ax A)
9 vex 2863 . . . . 5 x V
109snid 3761 . . . 4 x {x}
11 snelpwi 4117 . . . 4 (x A → {x} A)
12 elunii 3897 . . . 4 ((x {x} {x} A) → x A)
1310, 11, 12sylancr 644 . . 3 (x Ax A)
148, 13impbii 180 . 2 (x Ax A)
1514eqriv 2350 1 A = A
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710   wss 3258  cpw 3723  {csn 3738  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-uni 3893
This theorem is referenced by:  nnadjoinpw  4522
  Copyright terms: Public domain W3C validator