New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unipw | GIF version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (The proof was shortened by Alan Sare, 28-Dec-2008.) (Contributed by SF, 14-Oct-1996.) (Revised by SF, 29-Dec-2008.) |
Ref | Expression |
---|---|
unipw | ⊢ ∪℘A = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3895 | . . . 4 ⊢ (x ∈ ∪℘A ↔ ∃y(x ∈ y ∧ y ∈ ℘A)) | |
2 | vex 2863 | . . . . . . . 8 ⊢ y ∈ V | |
3 | 2 | elpw 3729 | . . . . . . 7 ⊢ (y ∈ ℘A ↔ y ⊆ A) |
4 | ssel 3268 | . . . . . . 7 ⊢ (y ⊆ A → (x ∈ y → x ∈ A)) | |
5 | 3, 4 | sylbi 187 | . . . . . 6 ⊢ (y ∈ ℘A → (x ∈ y → x ∈ A)) |
6 | 5 | impcom 419 | . . . . 5 ⊢ ((x ∈ y ∧ y ∈ ℘A) → x ∈ A) |
7 | 6 | exlimiv 1634 | . . . 4 ⊢ (∃y(x ∈ y ∧ y ∈ ℘A) → x ∈ A) |
8 | 1, 7 | sylbi 187 | . . 3 ⊢ (x ∈ ∪℘A → x ∈ A) |
9 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
10 | 9 | snid 3761 | . . . 4 ⊢ x ∈ {x} |
11 | snelpwi 4117 | . . . 4 ⊢ (x ∈ A → {x} ∈ ℘A) | |
12 | elunii 3897 | . . . 4 ⊢ ((x ∈ {x} ∧ {x} ∈ ℘A) → x ∈ ∪℘A) | |
13 | 10, 11, 12 | sylancr 644 | . . 3 ⊢ (x ∈ A → x ∈ ∪℘A) |
14 | 8, 13 | impbii 180 | . 2 ⊢ (x ∈ ∪℘A ↔ x ∈ A) |
15 | 14 | eqriv 2350 | 1 ⊢ ∪℘A = A |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 ℘cpw 3723 {csn 3738 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-uni 3893 |
This theorem is referenced by: nnadjoinpw 4522 |
Copyright terms: Public domain | W3C validator |