New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniun | Unicode version |
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
uniun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1605 | . . . 4 | |
2 | elun 3221 | . . . . . . 7 | |
3 | 2 | anbi2i 675 | . . . . . 6 |
4 | andi 837 | . . . . . 6 | |
5 | 3, 4 | bitri 240 | . . . . 5 |
6 | 5 | exbii 1582 | . . . 4 |
7 | eluni 3895 | . . . . 5 | |
8 | eluni 3895 | . . . . 5 | |
9 | 7, 8 | orbi12i 507 | . . . 4 |
10 | 1, 6, 9 | 3bitr4i 268 | . . 3 |
11 | eluni 3895 | . . 3 | |
12 | elun 3221 | . . 3 | |
13 | 10, 11, 12 | 3bitr4i 268 | . 2 |
14 | 13 | eqriv 2350 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wo 357 wa 358 wex 1541 wceq 1642 wcel 1710 cun 3208 cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-uni 3893 |
This theorem is referenced by: pw1equn 4332 pw1eqadj 4333 nnadjoin 4521 fvun 5379 |
Copyright terms: Public domain | W3C validator |