NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniun GIF version

Theorem uniun 3910
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun (AB) = (AB)

Proof of Theorem uniun
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1605 . . . 4 (y((x y y A) (x y y B)) ↔ (y(x y y A) y(x y y B)))
2 elun 3220 . . . . . . 7 (y (AB) ↔ (y A y B))
32anbi2i 675 . . . . . 6 ((x y y (AB)) ↔ (x y (y A y B)))
4 andi 837 . . . . . 6 ((x y (y A y B)) ↔ ((x y y A) (x y y B)))
53, 4bitri 240 . . . . 5 ((x y y (AB)) ↔ ((x y y A) (x y y B)))
65exbii 1582 . . . 4 (y(x y y (AB)) ↔ y((x y y A) (x y y B)))
7 eluni 3894 . . . . 5 (x Ay(x y y A))
8 eluni 3894 . . . . 5 (x By(x y y B))
97, 8orbi12i 507 . . . 4 ((x A x B) ↔ (y(x y y A) y(x y y B)))
101, 6, 93bitr4i 268 . . 3 (y(x y y (AB)) ↔ (x A x B))
11 eluni 3894 . . 3 (x (AB) ↔ y(x y y (AB)))
12 elun 3220 . . 3 (x (AB) ↔ (x A x B))
1310, 11, 123bitr4i 268 . 2 (x (AB) ↔ x (AB))
1413eqriv 2350 1 (AB) = (AB)
Colors of variables: wff setvar class
Syntax hints:   wo 357   wa 358  wex 1541   = wceq 1642   wcel 1710  cun 3207  cuni 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-uni 3892
This theorem is referenced by:  pw1equn  4331  pw1eqadj  4332  nnadjoin  4520  fvun  5378
  Copyright terms: Public domain W3C validator