NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpassenlem Unicode version

Theorem xpassenlem 6056
Description: Lemma for xpassen 6057. Compute a projection. (Contributed by Scott Fenton, 19-Apr-2021.)
Assertion
Ref Expression
xpassenlem Proj1 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2

Proof of Theorem xpassenlem
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opeq 4619 . . . . 5 Proj1 Proj2
21breq1i 4646 . . . 4 Proj1 Proj1 Proj2 Proj1
3 brco 4883 . . . 4 Proj1 Proj2 Proj1 Proj1 Proj2 Proj1
4 vex 2862 . . . . . . . . . 10
54proj1ex 4593 . . . . . . . . 9 Proj1
64proj2ex 4594 . . . . . . . . 9 Proj2
75, 6opbr1st 5501 . . . . . . . 8 Proj1 Proj2 Proj1
8 eqcom 2355 . . . . . . . 8 Proj1 Proj1
97, 8bitri 240 . . . . . . 7 Proj1 Proj2 Proj1
109anbi1i 676 . . . . . 6 Proj1 Proj2 Proj1 Proj1 Proj1
1110exbii 1582 . . . . 5 Proj1 Proj2 Proj1 Proj1 Proj1
12 breq1 4642 . . . . . . 7 Proj1 Proj1 Proj1 Proj1
13 opeq 4619 . . . . . . . . 9 Proj1 Proj1 Proj1 Proj2 Proj1
1413breq1i 4646 . . . . . . . 8 Proj1 Proj1 Proj1 Proj1 Proj2 Proj1 Proj1
155proj1ex 4593 . . . . . . . . 9 Proj1 Proj1
165proj2ex 4594 . . . . . . . . 9 Proj2 Proj1
1715, 16opbr1st 5501 . . . . . . . 8 Proj1 Proj1 Proj2 Proj1 Proj1 Proj1 Proj1 Proj1
1814, 17bitri 240 . . . . . . 7 Proj1 Proj1 Proj1 Proj1 Proj1
1912, 18syl6bb 252 . . . . . 6 Proj1 Proj1 Proj1 Proj1 Proj1
205, 19ceqsexv 2894 . . . . 5 Proj1 Proj1 Proj1 Proj1 Proj1
2111, 20bitri 240 . . . 4 Proj1 Proj2 Proj1 Proj1 Proj1 Proj1
222, 3, 213bitri 262 . . 3 Proj1 Proj1 Proj1 Proj1
23 opeq 4619 . . . . 5 Proj2 Proj1 Proj2 Proj2 Proj2
2423breq2i 4647 . . . 4 Proj2 Proj1 Proj2 Proj2 Proj2
25 trtxp 5781 . . . 4 Proj1 Proj2 Proj2 Proj2 Proj1 Proj2 Proj2 Proj2
261breq1i 4646 . . . . . 6 Proj1 Proj2 Proj1 Proj2 Proj1 Proj2
27 brco 4883 . . . . . 6 Proj1 Proj2 Proj1 Proj2 Proj1 Proj2 Proj1 Proj2
289anbi1i 676 . . . . . . . 8 Proj1 Proj2 Proj1 Proj2 Proj1 Proj1 Proj2
2928exbii 1582 . . . . . . 7 Proj1 Proj2 Proj1 Proj2 Proj1 Proj1 Proj2
30 breq1 4642 . . . . . . . . 9 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2
3113breq1i 4646 . . . . . . . . . 10 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2
3215, 16opbr2nd 5502 . . . . . . . . . 10 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj2 Proj1 Proj1 Proj2
3331, 32bitri 240 . . . . . . . . 9 Proj1 Proj1 Proj2 Proj2 Proj1 Proj1 Proj2
3430, 33syl6bb 252 . . . . . . . 8 Proj1 Proj1 Proj2 Proj2 Proj1 Proj1 Proj2
355, 34ceqsexv 2894 . . . . . . 7 Proj1 Proj1 Proj2 Proj2 Proj1 Proj1 Proj2
3629, 35bitri 240 . . . . . 6 Proj1 Proj2 Proj1 Proj2 Proj2 Proj1 Proj1 Proj2
3726, 27, 363bitri 262 . . . . 5 Proj1 Proj2 Proj2 Proj1 Proj1 Proj2
381breq1i 4646 . . . . . 6 Proj2 Proj2 Proj1 Proj2 Proj2 Proj2
395, 6opbr2nd 5502 . . . . . 6 Proj1 Proj2 Proj2 Proj2 Proj2 Proj2 Proj2
4038, 39bitri 240 . . . . 5 Proj2 Proj2 Proj2 Proj2 Proj2
4137, 40anbi12i 678 . . . 4 Proj1 Proj2 Proj2 Proj2 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2
4224, 25, 413bitri 262 . . 3 Proj2 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2
4322, 42anbi12i 678 . 2 Proj1 Proj2 Proj1 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2
44 opeq 4619 . . . 4 Proj1 Proj2
4544breq2i 4647 . . 3 Proj1 Proj2
46 trtxp 5781 . . 3 Proj1 Proj2 Proj1 Proj2
4745, 46bitri 240 . 2 Proj1 Proj2
48 3anass 938 . 2 Proj1 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2 Proj1 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2
4943, 47, 483bitr4i 268 1 Proj1 Proj1 Proj1 Proj2 Proj1 Proj1 Proj2 Proj2 Proj2 Proj2
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358   w3a 934  wex 1541   wceq 1642  cop 4561   Proj1 cproj1 4563   Proj2 cproj2 4564   class class class wbr 4639  c1st 4717   ccom 4721  c2nd 4783   ctxp 5735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-co 4726  df-cnv 4785  df-2nd 4797  df-txp 5736
This theorem is referenced by:  xpassen  6057
  Copyright terms: Public domain W3C validator