NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpassenlem GIF version

Theorem xpassenlem 6057
Description: Lemma for xpassen 6058. Compute a projection. (Contributed by Scott Fenton, 19-Apr-2021.)
Assertion
Ref Expression
xpassenlem (y((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))x ↔ ( Proj1 Proj1 y = Proj1 x Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x))

Proof of Theorem xpassenlem
Dummy variable t is distinct from all other variables.
StepHypRef Expression
1 opeq 4620 . . . . 5 y = Proj1 y, Proj2 y
21breq1i 4647 . . . 4 (y(1st 1st ) Proj1 x Proj1 y, Proj2 y(1st 1st ) Proj1 x)
3 brco 4884 . . . 4 ( Proj1 y, Proj2 y(1st 1st ) Proj1 xt( Proj1 y, Proj2 y1st t t1st Proj1 x))
4 vex 2863 . . . . . . . . . 10 y V
54proj1ex 4594 . . . . . . . . 9 Proj1 y V
64proj2ex 4595 . . . . . . . . 9 Proj2 y V
75, 6opbr1st 5502 . . . . . . . 8 ( Proj1 y, Proj2 y1st t Proj1 y = t)
8 eqcom 2355 . . . . . . . 8 ( Proj1 y = tt = Proj1 y)
97, 8bitri 240 . . . . . . 7 ( Proj1 y, Proj2 y1st tt = Proj1 y)
109anbi1i 676 . . . . . 6 (( Proj1 y, Proj2 y1st t t1st Proj1 x) ↔ (t = Proj1 y t1st Proj1 x))
1110exbii 1582 . . . . 5 (t( Proj1 y, Proj2 y1st t t1st Proj1 x) ↔ t(t = Proj1 y t1st Proj1 x))
12 breq1 4643 . . . . . . 7 (t = Proj1 y → (t1st Proj1 x Proj1 y1st Proj1 x))
13 opeq 4620 . . . . . . . . 9 Proj1 y = Proj1 Proj1 y, Proj2 Proj1 y
1413breq1i 4647 . . . . . . . 8 ( Proj1 y1st Proj1 x Proj1 Proj1 y, Proj2 Proj1 y1st Proj1 x)
155proj1ex 4594 . . . . . . . . 9 Proj1 Proj1 y V
165proj2ex 4595 . . . . . . . . 9 Proj2 Proj1 y V
1715, 16opbr1st 5502 . . . . . . . 8 ( Proj1 Proj1 y, Proj2 Proj1 y1st Proj1 x Proj1 Proj1 y = Proj1 x)
1814, 17bitri 240 . . . . . . 7 ( Proj1 y1st Proj1 x Proj1 Proj1 y = Proj1 x)
1912, 18syl6bb 252 . . . . . 6 (t = Proj1 y → (t1st Proj1 x Proj1 Proj1 y = Proj1 x))
205, 19ceqsexv 2895 . . . . 5 (t(t = Proj1 y t1st Proj1 x) ↔ Proj1 Proj1 y = Proj1 x)
2111, 20bitri 240 . . . 4 (t( Proj1 y, Proj2 y1st t t1st Proj1 x) ↔ Proj1 Proj1 y = Proj1 x)
222, 3, 213bitri 262 . . 3 (y(1st 1st ) Proj1 x Proj1 Proj1 y = Proj1 x)
23 opeq 4620 . . . . 5 Proj2 x = Proj1 Proj2 x, Proj2 Proj2 x
2423breq2i 4648 . . . 4 (y((2nd 1st ) ⊗ 2nd ) Proj2 xy((2nd 1st ) ⊗ 2nd ) Proj1 Proj2 x, Proj2 Proj2 x)
25 trtxp 5782 . . . 4 (y((2nd 1st ) ⊗ 2nd ) Proj1 Proj2 x, Proj2 Proj2 x ↔ (y(2nd 1st ) Proj1 Proj2 x y2nd Proj2 Proj2 x))
261breq1i 4647 . . . . . 6 (y(2nd 1st ) Proj1 Proj2 x Proj1 y, Proj2 y(2nd 1st ) Proj1 Proj2 x)
27 brco 4884 . . . . . 6 ( Proj1 y, Proj2 y(2nd 1st ) Proj1 Proj2 xt( Proj1 y, Proj2 y1st t t2nd Proj1 Proj2 x))
289anbi1i 676 . . . . . . . 8 (( Proj1 y, Proj2 y1st t t2nd Proj1 Proj2 x) ↔ (t = Proj1 y t2nd Proj1 Proj2 x))
2928exbii 1582 . . . . . . 7 (t( Proj1 y, Proj2 y1st t t2nd Proj1 Proj2 x) ↔ t(t = Proj1 y t2nd Proj1 Proj2 x))
30 breq1 4643 . . . . . . . . 9 (t = Proj1 y → (t2nd Proj1 Proj2 x Proj1 y2nd Proj1 Proj2 x))
3113breq1i 4647 . . . . . . . . . 10 ( Proj1 y2nd Proj1 Proj2 x Proj1 Proj1 y, Proj2 Proj1 y2nd Proj1 Proj2 x)
3215, 16opbr2nd 5503 . . . . . . . . . 10 ( Proj1 Proj1 y, Proj2 Proj1 y2nd Proj1 Proj2 x Proj2 Proj1 y = Proj1 Proj2 x)
3331, 32bitri 240 . . . . . . . . 9 ( Proj1 y2nd Proj1 Proj2 x Proj2 Proj1 y = Proj1 Proj2 x)
3430, 33syl6bb 252 . . . . . . . 8 (t = Proj1 y → (t2nd Proj1 Proj2 x Proj2 Proj1 y = Proj1 Proj2 x))
355, 34ceqsexv 2895 . . . . . . 7 (t(t = Proj1 y t2nd Proj1 Proj2 x) ↔ Proj2 Proj1 y = Proj1 Proj2 x)
3629, 35bitri 240 . . . . . 6 (t( Proj1 y, Proj2 y1st t t2nd Proj1 Proj2 x) ↔ Proj2 Proj1 y = Proj1 Proj2 x)
3726, 27, 363bitri 262 . . . . 5 (y(2nd 1st ) Proj1 Proj2 x Proj2 Proj1 y = Proj1 Proj2 x)
381breq1i 4647 . . . . . 6 (y2nd Proj2 Proj2 x Proj1 y, Proj2 y2nd Proj2 Proj2 x)
395, 6opbr2nd 5503 . . . . . 6 ( Proj1 y, Proj2 y2nd Proj2 Proj2 x Proj2 y = Proj2 Proj2 x)
4038, 39bitri 240 . . . . 5 (y2nd Proj2 Proj2 x Proj2 y = Proj2 Proj2 x)
4137, 40anbi12i 678 . . . 4 ((y(2nd 1st ) Proj1 Proj2 x y2nd Proj2 Proj2 x) ↔ ( Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x))
4224, 25, 413bitri 262 . . 3 (y((2nd 1st ) ⊗ 2nd ) Proj2 x ↔ ( Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x))
4322, 42anbi12i 678 . 2 ((y(1st 1st ) Proj1 x y((2nd 1st ) ⊗ 2nd ) Proj2 x) ↔ ( Proj1 Proj1 y = Proj1 x ( Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x)))
44 opeq 4620 . . . 4 x = Proj1 x, Proj2 x
4544breq2i 4648 . . 3 (y((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))xy((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) Proj1 x, Proj2 x)
46 trtxp 5782 . . 3 (y((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) Proj1 x, Proj2 x ↔ (y(1st 1st ) Proj1 x y((2nd 1st ) ⊗ 2nd ) Proj2 x))
4745, 46bitri 240 . 2 (y((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))x ↔ (y(1st 1st ) Proj1 x y((2nd 1st ) ⊗ 2nd ) Proj2 x))
48 3anass 938 . 2 (( Proj1 Proj1 y = Proj1 x Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x) ↔ ( Proj1 Proj1 y = Proj1 x ( Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x)))
4943, 47, 483bitr4i 268 1 (y((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))x ↔ ( Proj1 Proj1 y = Proj1 x Proj2 Proj1 y = Proj1 Proj2 x Proj2 y = Proj2 Proj2 x))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934  wex 1541   = wceq 1642  cop 4562   Proj1 cproj1 4564   Proj2 cproj2 4565   class class class wbr 4640  1st c1st 4718   ccom 4722  2nd c2nd 4784  ctxp 5736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-cnv 4786  df-2nd 4798  df-txp 5737
This theorem is referenced by:  xpassen  6058
  Copyright terms: Public domain W3C validator