New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > trtxp | Unicode version |
Description: Trinary relationship over a tail cross product. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
trtxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . . 3 | |
2 | opexb 4604 | . . . 4 | |
3 | 2 | anbi2i 675 | . . 3 |
4 | 1, 3 | sylib 188 | . 2 |
5 | brex 4690 | . . . 4 | |
6 | brex 4690 | . . . 4 | |
7 | 5, 6 | anim12i 549 | . . 3 |
8 | anandi 801 | . . 3 | |
9 | 7, 8 | sylibr 203 | . 2 |
10 | breq1 4643 | . . . . . 6 | |
11 | breq1 4643 | . . . . . . 7 | |
12 | breq1 4643 | . . . . . . 7 | |
13 | 11, 12 | anbi12d 691 | . . . . . 6 |
14 | 10, 13 | bibi12d 312 | . . . . 5 |
15 | 14 | imbi2d 307 | . . . 4 |
16 | opeq1 4579 | . . . . . . 7 | |
17 | 16 | breq2d 4652 | . . . . . 6 |
18 | breq2 4644 | . . . . . . 7 | |
19 | 18 | anbi1d 685 | . . . . . 6 |
20 | 17, 19 | bibi12d 312 | . . . . 5 |
21 | opeq2 4580 | . . . . . . 7 | |
22 | 21 | breq2d 4652 | . . . . . 6 |
23 | breq2 4644 | . . . . . . 7 | |
24 | 23 | anbi2d 684 | . . . . . 6 |
25 | 22, 24 | bibi12d 312 | . . . . 5 |
26 | df-txp 5737 | . . . . . . 7 | |
27 | 26 | breqi 4646 | . . . . . 6 |
28 | brin 4694 | . . . . . 6 | |
29 | brco 4884 | . . . . . . . 8 | |
30 | ancom 437 | . . . . . . . . . 10 | |
31 | brcnv 4893 | . . . . . . . . . . . 12 | |
32 | vex 2863 | . . . . . . . . . . . . 13 | |
33 | vex 2863 | . . . . . . . . . . . . 13 | |
34 | 32, 33 | opbr1st 5502 | . . . . . . . . . . . 12 |
35 | equcom 1680 | . . . . . . . . . . . 12 | |
36 | 31, 34, 35 | 3bitri 262 | . . . . . . . . . . 11 |
37 | 36 | anbi1i 676 | . . . . . . . . . 10 |
38 | 30, 37 | bitri 240 | . . . . . . . . 9 |
39 | 38 | exbii 1582 | . . . . . . . 8 |
40 | breq2 4644 | . . . . . . . . 9 | |
41 | 32, 40 | ceqsexv 2895 | . . . . . . . 8 |
42 | 29, 39, 41 | 3bitri 262 | . . . . . . 7 |
43 | brco 4884 | . . . . . . . 8 | |
44 | ancom 437 | . . . . . . . . . 10 | |
45 | brcnv 4893 | . . . . . . . . . . . 12 | |
46 | 32, 33 | opbr2nd 5503 | . . . . . . . . . . . 12 |
47 | equcom 1680 | . . . . . . . . . . . 12 | |
48 | 45, 46, 47 | 3bitri 262 | . . . . . . . . . . 11 |
49 | 48 | anbi1i 676 | . . . . . . . . . 10 |
50 | 44, 49 | bitri 240 | . . . . . . . . 9 |
51 | 50 | exbii 1582 | . . . . . . . 8 |
52 | breq2 4644 | . . . . . . . . 9 | |
53 | 33, 52 | ceqsexv 2895 | . . . . . . . 8 |
54 | 43, 51, 53 | 3bitri 262 | . . . . . . 7 |
55 | 42, 54 | anbi12i 678 | . . . . . 6 |
56 | 27, 28, 55 | 3bitri 262 | . . . . 5 |
57 | 20, 25, 56 | vtocl2g 2919 | . . . 4 |
58 | 15, 57 | vtoclg 2915 | . . 3 |
59 | 58 | imp 418 | . 2 |
60 | 4, 9, 59 | pm5.21nii 342 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 cin 3209 cop 4562 class class class wbr 4640 c1st 4718 ccom 4722 ccnv 4772 c2nd 4784 ctxp 5736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-cnv 4786 df-2nd 4798 df-txp 5737 |
This theorem is referenced by: oteltxp 5783 txpcofun 5804 addcfnex 5825 qrpprod 5837 xpassenlem 6057 xpassen 6058 enmap2lem1 6064 enmap1lem1 6070 ovmuc 6131 ceex 6175 nncdiv3lem1 6276 nchoicelem10 6299 |
Copyright terms: Public domain | W3C validator |