| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.21hOLD | GIF version | ||
| Description: Obsolete proof of 19.21h 1797 as of 1-Jan-2018. (Contributed by NM, 1-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.21hOLD.1 | ⊢ (φ → ∀xφ) |
| Ref | Expression |
|---|---|
| 19.21hOLD | ⊢ (∀x(φ → ψ) ↔ (φ → ∀xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21hOLD.1 | . . 3 ⊢ (φ → ∀xφ) | |
| 2 | alim 1558 | . . 3 ⊢ (∀x(φ → ψ) → (∀xφ → ∀xψ)) | |
| 3 | 1, 2 | syl5 28 | . 2 ⊢ (∀x(φ → ψ) → (φ → ∀xψ)) |
| 4 | hba1 1786 | . . . 4 ⊢ (∀xψ → ∀x∀xψ) | |
| 5 | 1, 4 | hbim 1817 | . . 3 ⊢ ((φ → ∀xψ) → ∀x(φ → ∀xψ)) |
| 6 | sp 1747 | . . . 4 ⊢ (∀xψ → ψ) | |
| 7 | 6 | imim2i 13 | . . 3 ⊢ ((φ → ∀xψ) → (φ → ψ)) |
| 8 | 5, 7 | alrimih 1565 | . 2 ⊢ ((φ → ∀xψ) → ∀x(φ → ψ)) |
| 9 | 3, 8 | impbii 180 | 1 ⊢ (∀x(φ → ψ) ↔ (φ → ∀xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |