New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.36i | GIF version |
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.36.1 | ⊢ Ⅎxψ |
19.36i.2 | ⊢ ∃x(φ → ψ) |
Ref | Expression |
---|---|
19.36i | ⊢ (∀xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.36i.2 | . 2 ⊢ ∃x(φ → ψ) | |
2 | 19.36.1 | . . 3 ⊢ Ⅎxψ | |
3 | 2 | 19.36 1871 | . 2 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) |
4 | 1, 3 | mpbi 199 | 1 ⊢ (∀xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.36aiv 1897 vtoclf 2909 |
Copyright terms: Public domain | W3C validator |