| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > vtoclf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1986. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| vtoclf.1 | ⊢ Ⅎxψ |
| vtoclf.2 | ⊢ A ∈ V |
| vtoclf.3 | ⊢ (x = A → (φ ↔ ψ)) |
| vtoclf.4 | ⊢ φ |
| Ref | Expression |
|---|---|
| vtoclf | ⊢ ψ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclf.1 | . . 3 ⊢ Ⅎxψ | |
| 2 | vtoclf.2 | . . . . 5 ⊢ A ∈ V | |
| 3 | 2 | isseti 2866 | . . . 4 ⊢ ∃x x = A |
| 4 | vtoclf.3 | . . . . . 6 ⊢ (x = A → (φ ↔ ψ)) | |
| 5 | 4 | biimpd 198 | . . . . 5 ⊢ (x = A → (φ → ψ)) |
| 6 | 5 | eximi 1576 | . . . 4 ⊢ (∃x x = A → ∃x(φ → ψ)) |
| 7 | 3, 6 | ax-mp 5 | . . 3 ⊢ ∃x(φ → ψ) |
| 8 | 1, 7 | 19.36i 1872 | . 2 ⊢ (∀xφ → ψ) |
| 9 | vtoclf.4 | . 2 ⊢ φ | |
| 10 | 8, 9 | mpg 1548 | 1 ⊢ ψ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: vtocl 2910 |
| Copyright terms: Public domain | W3C validator |