NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.37 GIF version

Theorem 19.37 1873
Description: Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37.1 xφ
Assertion
Ref Expression
19.37 (x(φψ) ↔ (φxψ))

Proof of Theorem 19.37
StepHypRef Expression
1 19.35 1600 . 2 (x(φψ) ↔ (xφxψ))
2 19.37.1 . . . 4 xφ
3219.3 1785 . . 3 (xφφ)
43imbi1i 315 . 2 ((xφxψ) ↔ (φxψ))
51, 4bitri 240 1 (x(φψ) ↔ (φxψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.37v  1899
  Copyright terms: Public domain W3C validator