NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.36aiv GIF version

Theorem 19.36aiv 1897
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36aiv.1 x(φψ)
Assertion
Ref Expression
19.36aiv (xφψ)
Distinct variable group:   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem 19.36aiv
StepHypRef Expression
1 nfv 1619 . 2 xψ
2 19.36aiv.1 . 2 x(φψ)
31, 219.36i 1872 1 (xφψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  vtocl2  2911  vtocl3  2912
  Copyright terms: Public domain W3C validator