NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.36 GIF version

Theorem 19.36 1871
Description: Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36.1 xψ
Assertion
Ref Expression
19.36 (x(φψ) ↔ (xφψ))

Proof of Theorem 19.36
StepHypRef Expression
1 19.35 1600 . 2 (x(φψ) ↔ (xφxψ))
2 19.36.1 . . . 4 xψ
3219.9 1783 . . 3 (xψψ)
43imbi2i 303 . 2 ((xφxψ) ↔ (xφψ))
51, 4bitri 240 1 (x(φψ) ↔ (xφψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.36i  1872  19.36v  1896  19.12vv  1898  spcimgft  2931
  Copyright terms: Public domain W3C validator