| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.36 | GIF version | ||
| Description: Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.36.1 | ⊢ Ⅎxψ |
| Ref | Expression |
|---|---|
| 19.36 | ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1600 | . 2 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ∃xψ)) | |
| 2 | 19.36.1 | . . . 4 ⊢ Ⅎxψ | |
| 3 | 2 | 19.9 1783 | . . 3 ⊢ (∃xψ ↔ ψ) |
| 4 | 3 | imbi2i 303 | . 2 ⊢ ((∀xφ → ∃xψ) ↔ (∀xφ → ψ)) |
| 5 | 1, 4 | bitri 240 | 1 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: 19.36i 1872 19.36v 1896 19.12vv 1898 spcimgft 2931 |
| Copyright terms: Public domain | W3C validator |