NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.37v GIF version

Theorem 19.37v 1899
Description: Special case of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.37v (x(φψ) ↔ (φxψ))
Distinct variable group:   φ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem 19.37v
StepHypRef Expression
1 nfv 1619 . 2 xφ
2119.37 1873 1 (x(φψ) ↔ (φxψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.37aiv  1900  moanim  2260
  Copyright terms: Public domain W3C validator