| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.12vv | GIF version | ||
| Description: Special case of 19.12 1847 where its converse holds. (Contributed by NM, 18-Jul-2001.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| 19.12vv | ⊢ (∃x∀y(φ → ψ) ↔ ∀y∃x(φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1890 | . . 3 ⊢ (∀y(φ → ψ) ↔ (φ → ∀yψ)) | |
| 2 | 1 | exbii 1582 | . 2 ⊢ (∃x∀y(φ → ψ) ↔ ∃x(φ → ∀yψ)) |
| 3 | nfv 1619 | . . . 4 ⊢ Ⅎxψ | |
| 4 | 3 | nfal 1842 | . . 3 ⊢ Ⅎx∀yψ |
| 5 | 4 | 19.36 1871 | . 2 ⊢ (∃x(φ → ∀yψ) ↔ (∀xφ → ∀yψ)) |
| 6 | 19.36v 1896 | . . . 4 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) | |
| 7 | 6 | albii 1566 | . . 3 ⊢ (∀y∃x(φ → ψ) ↔ ∀y(∀xφ → ψ)) |
| 8 | nfv 1619 | . . . . 5 ⊢ Ⅎyφ | |
| 9 | 8 | nfal 1842 | . . . 4 ⊢ Ⅎy∀xφ |
| 10 | 9 | 19.21 1796 | . . 3 ⊢ (∀y(∀xφ → ψ) ↔ (∀xφ → ∀yψ)) |
| 11 | 7, 10 | bitr2i 241 | . 2 ⊢ ((∀xφ → ∀yψ) ↔ ∀y∃x(φ → ψ)) |
| 12 | 2, 5, 11 | 3bitri 262 | 1 ⊢ (∃x∀y(φ → ψ) ↔ ∀y∃x(φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |