NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.42 GIF version

Theorem 19.42 1880
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
19.42.1 xφ
Assertion
Ref Expression
19.42 (x(φ ψ) ↔ (φ xψ))

Proof of Theorem 19.42
StepHypRef Expression
1 19.42.1 . . 3 xφ
2119.41 1879 . 2 (x(ψ φ) ↔ (xψ φ))
3 exancom 1586 . 2 (x(φ ψ) ↔ x(ψ φ))
4 ancom 437 . 2 ((φ xψ) ↔ (xψ φ))
52, 3, 43bitr4i 268 1 (x(φ ψ) ↔ (φ xψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.42v  1905  eean  1912  r2exf  2651
  Copyright terms: Public domain W3C validator