New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.42 | GIF version |
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.42.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
19.42 | ⊢ (∃x(φ ∧ ψ) ↔ (φ ∧ ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42.1 | . . 3 ⊢ Ⅎxφ | |
2 | 1 | 19.41 1879 | . 2 ⊢ (∃x(ψ ∧ φ) ↔ (∃xψ ∧ φ)) |
3 | exancom 1586 | . 2 ⊢ (∃x(φ ∧ ψ) ↔ ∃x(ψ ∧ φ)) | |
4 | ancom 437 | . 2 ⊢ ((φ ∧ ∃xψ) ↔ (∃xψ ∧ φ)) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ (∃x(φ ∧ ψ) ↔ (φ ∧ ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.42v 1905 eean 1912 r2exf 2650 |
Copyright terms: Public domain | W3C validator |