New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eean | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eean.1 | ⊢ Ⅎyφ |
eean.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
eean | ⊢ (∃x∃y(φ ∧ ψ) ↔ (∃xφ ∧ ∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eean.1 | . . . 4 ⊢ Ⅎyφ | |
2 | 1 | 19.42 1880 | . . 3 ⊢ (∃y(φ ∧ ψ) ↔ (φ ∧ ∃yψ)) |
3 | 2 | exbii 1582 | . 2 ⊢ (∃x∃y(φ ∧ ψ) ↔ ∃x(φ ∧ ∃yψ)) |
4 | eean.2 | . . . 4 ⊢ Ⅎxψ | |
5 | 4 | nfex 1843 | . . 3 ⊢ Ⅎx∃yψ |
6 | 5 | 19.41 1879 | . 2 ⊢ (∃x(φ ∧ ∃yψ) ↔ (∃xφ ∧ ∃yψ)) |
7 | 3, 6 | bitri 240 | 1 ⊢ (∃x∃y(φ ∧ ψ) ↔ (∃xφ ∧ ∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: eeanv 1913 reean 2778 |
Copyright terms: Public domain | W3C validator |