| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.41 | GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| 19.41.1 | ⊢ Ⅎxψ | 
| Ref | Expression | 
|---|---|
| 19.41 | ⊢ (∃x(φ ∧ ψ) ↔ (∃xφ ∧ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.40 1609 | . . 3 ⊢ (∃x(φ ∧ ψ) → (∃xφ ∧ ∃xψ)) | |
| 2 | 19.41.1 | . . . . 5 ⊢ Ⅎxψ | |
| 3 | id 19 | . . . . 5 ⊢ (ψ → ψ) | |
| 4 | 2, 3 | exlimi 1803 | . . . 4 ⊢ (∃xψ → ψ) | 
| 5 | 4 | anim2i 552 | . . 3 ⊢ ((∃xφ ∧ ∃xψ) → (∃xφ ∧ ψ)) | 
| 6 | 1, 5 | syl 15 | . 2 ⊢ (∃x(φ ∧ ψ) → (∃xφ ∧ ψ)) | 
| 7 | pm3.21 435 | . . . 4 ⊢ (ψ → (φ → (φ ∧ ψ))) | |
| 8 | 2, 7 | eximd 1770 | . . 3 ⊢ (ψ → (∃xφ → ∃x(φ ∧ ψ))) | 
| 9 | 8 | impcom 419 | . 2 ⊢ ((∃xφ ∧ ψ) → ∃x(φ ∧ ψ)) | 
| 10 | 6, 9 | impbii 180 | 1 ⊢ (∃x(φ ∧ ψ) ↔ (∃xφ ∧ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: 19.42 1880 19.41v 1901 eean 1912 r19.41 2764 eliunxp 4822 | 
| Copyright terms: Public domain | W3C validator |