| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2ralbii | GIF version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| ralbii.1 | ⊢ (φ ↔ ψ) |
| Ref | Expression |
|---|---|
| 2ralbii | ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x ∈ A ∀y ∈ B ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 2 | 1 | ralbii 2639 | . 2 ⊢ (∀y ∈ B φ ↔ ∀y ∈ B ψ) |
| 3 | 2 | ralbii 2639 | 1 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x ∈ A ∀y ∈ B ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: nnpweq 4524 fununi 5161 isocnv2 5493 |
| Copyright terms: Public domain | W3C validator |