New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralbii | GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
ralbii | ⊢ (∀x ∈ A φ ↔ ∀x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → (φ ↔ ψ)) |
3 | 2 | ralbidv 2635 | . 2 ⊢ ( ⊤ → (∀x ∈ A φ ↔ ∀x ∈ A ψ)) |
4 | 3 | trud 1323 | 1 ⊢ (∀x ∈ A φ ↔ ∀x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊤ wtru 1316 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: 2ralbii 2641 ralinexa 2660 r3al 2672 r19.26-2 2748 r19.26-3 2749 ralbiim 2752 r19.28av 2754 r19.30 2757 r19.32v 2758 r19.35 2759 cbvral2v 2844 cbvral3v 2846 sbralie 2849 ralcom4 2878 reu8 3033 2reuswap 3039 2reu5lem2 3043 eqsn 3868 disj5 3891 uni0b 3917 uni0c 3918 ssint 3943 iuniin 3980 iuneq2 3986 iunss 4008 ssiinf 4016 iinab 4028 iinun2 4033 iindif2 4036 iinin2 4037 iinuni 4050 sspwuni 4052 iinpw 4055 evenodddisjlem1 4516 evenodddisj 4517 nnadjoinpw 4522 rexiunxp 4825 ralxpf 4828 rninxp 5061 dminxp 5062 cnviin 5119 dffun9 5136 funcnv3 5158 fncnv 5159 fnres 5200 fnopabg 5206 fnopab2g 5207 fint 5246 funimass4 5369 funconstss 5407 dff13f 5473 foov 5607 dfnnc3 5886 |
Copyright terms: Public domain | W3C validator |