NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwv GIF version

Theorem pwv 3887
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv V = V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3292 . . . 4 x V
2 vex 2863 . . . . 5 x V
32elpw 3729 . . . 4 (x V ↔ x V)
41, 3mpbir 200 . . 3 x V
54, 22th 230 . 2 (x V ↔ x V)
65eqriv 2350 1 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  Vcvv 2860   wss 3258  cpw 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725
This theorem is referenced by:  1cvsfin  4543  ncpw1c  6155  ce2nc1  6194  nchoicelem19  6308  vncan  6338
  Copyright terms: Public domain W3C validator