| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pwv | GIF version | ||
| Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| pwv | ⊢ ℘V = V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssv 3292 | . . . 4 ⊢ x ⊆ V | |
| 2 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
| 3 | 2 | elpw 3729 | . . . 4 ⊢ (x ∈ ℘V ↔ x ⊆ V) | 
| 4 | 1, 3 | mpbir 200 | . . 3 ⊢ x ∈ ℘V | 
| 5 | 4, 2 | 2th 230 | . 2 ⊢ (x ∈ ℘V ↔ x ∈ V) | 
| 6 | 5 | eqriv 2350 | 1 ⊢ ℘V = V | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 ℘cpw 3723 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 | 
| This theorem is referenced by: 1cvsfin 4543 ncpw1c 6155 ce2nc1 6194 nchoicelem19 6308 vncan 6338 | 
| Copyright terms: Public domain | W3C validator |