Proof of Theorem pm11.07
Step | Hyp | Ref
| Expression |
1 | | a9ev 1656 |
. . . . . . 7
⊢ ∃x x = w |
2 | | a9ev 1656 |
. . . . . . 7
⊢ ∃z z = y |
3 | 1, 2 | pm3.2i 441 |
. . . . . 6
⊢ (∃x x = w ∧ ∃z z = y) |
4 | | a9ev 1656 |
. . . . . . 7
⊢ ∃x x = y |
5 | | a9ev 1656 |
. . . . . . 7
⊢ ∃z z = w |
6 | 4, 5 | pm3.2i 441 |
. . . . . 6
⊢ (∃x x = y ∧ ∃z z = w) |
7 | 3, 6 | 2th 230 |
. . . . 5
⊢ ((∃x x = w ∧ ∃z z = y) ↔ (∃x x = y ∧ ∃z z = w)) |
8 | | eeanv 1913 |
. . . . 5
⊢ (∃x∃z(x = w ∧ z = y) ↔ (∃x x = w ∧ ∃z z = y)) |
9 | | eeanv 1913 |
. . . . 5
⊢ (∃x∃z(x = y ∧ z = w) ↔ (∃x x = y ∧ ∃z z = w)) |
10 | 7, 8, 9 | 3bitr4i 268 |
. . . 4
⊢ (∃x∃z(x = w ∧ z = y) ↔ ∃x∃z(x = y ∧ z = w)) |
11 | 10 | anbi1i 676 |
. . 3
⊢ ((∃x∃z(x = w ∧ z = y) ∧ φ) ↔ (∃x∃z(x = y ∧ z = w) ∧ φ)) |
12 | | 19.41vv 1902 |
. . 3
⊢ (∃x∃z((x = w ∧ z = y) ∧ φ) ↔ (∃x∃z(x = w ∧ z = y) ∧ φ)) |
13 | | 19.41vv 1902 |
. . 3
⊢ (∃x∃z((x = y ∧ z = w) ∧ φ) ↔ (∃x∃z(x = y ∧ z = w) ∧ φ)) |
14 | 11, 12, 13 | 3bitr4i 268 |
. 2
⊢ (∃x∃z((x = w ∧ z = y) ∧ φ) ↔ ∃x∃z((x = y ∧ z = w) ∧ φ)) |
15 | | 2sb5 2112 |
. 2
⊢ ([w / x][y / z]φ ↔ ∃x∃z((x = w ∧ z = y) ∧ φ)) |
16 | | 2sb5 2112 |
. 2
⊢ ([y / x][w / z]φ ↔ ∃x∃z((x = y ∧ z = w) ∧ φ)) |
17 | 14, 15, 16 | 3bitr4i 268 |
1
⊢ ([w / x][y / z]φ ↔ [y / x][w / z]φ) |