Proof of Theorem pm11.07
| Step | Hyp | Ref
 | Expression | 
| 1 |   | a9ev 1656 | 
. . . . . . 7
⊢ ∃x x = w | 
| 2 |   | a9ev 1656 | 
. . . . . . 7
⊢ ∃z z = y | 
| 3 | 1, 2 | pm3.2i 441 | 
. . . . . 6
⊢ (∃x x = w ∧ ∃z z = y) | 
| 4 |   | a9ev 1656 | 
. . . . . . 7
⊢ ∃x x = y | 
| 5 |   | a9ev 1656 | 
. . . . . . 7
⊢ ∃z z = w | 
| 6 | 4, 5 | pm3.2i 441 | 
. . . . . 6
⊢ (∃x x = y ∧ ∃z z = w) | 
| 7 | 3, 6 | 2th 230 | 
. . . . 5
⊢ ((∃x x = w ∧ ∃z z = y) ↔ (∃x x = y ∧ ∃z z = w)) | 
| 8 |   | eeanv 1913 | 
. . . . 5
⊢ (∃x∃z(x = w ∧ z = y) ↔ (∃x x = w ∧ ∃z z = y)) | 
| 9 |   | eeanv 1913 | 
. . . . 5
⊢ (∃x∃z(x = y ∧ z = w) ↔ (∃x x = y ∧ ∃z z = w)) | 
| 10 | 7, 8, 9 | 3bitr4i 268 | 
. . . 4
⊢ (∃x∃z(x = w ∧ z = y) ↔ ∃x∃z(x = y ∧ z = w)) | 
| 11 | 10 | anbi1i 676 | 
. . 3
⊢ ((∃x∃z(x = w ∧ z = y) ∧ φ) ↔ (∃x∃z(x = y ∧ z = w) ∧ φ)) | 
| 12 |   | 19.41vv 1902 | 
. . 3
⊢ (∃x∃z((x = w ∧ z = y) ∧ φ) ↔ (∃x∃z(x = w ∧ z = y) ∧ φ)) | 
| 13 |   | 19.41vv 1902 | 
. . 3
⊢ (∃x∃z((x = y ∧ z = w) ∧ φ) ↔ (∃x∃z(x = y ∧ z = w) ∧ φ)) | 
| 14 | 11, 12, 13 | 3bitr4i 268 | 
. 2
⊢ (∃x∃z((x = w ∧ z = y) ∧ φ) ↔ ∃x∃z((x = y ∧ z = w) ∧ φ)) | 
| 15 |   | 2sb5 2112 | 
. 2
⊢ ([w / x][y / z]φ ↔ ∃x∃z((x = w ∧ z = y) ∧ φ)) | 
| 16 |   | 2sb5 2112 | 
. 2
⊢ ([y / x][w / z]φ ↔ ∃x∃z((x = y ∧ z = w) ∧ φ)) | 
| 17 | 14, 15, 16 | 3bitr4i 268 | 
1
⊢ ([w / x][y / z]φ ↔ [y / x][w / z]φ) |