New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfnul3 | GIF version |
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
dfnul3 | ⊢ ∅ = {x ∈ A ∣ ¬ x ∈ A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 852 | . . . . 5 ⊢ ¬ (x ∈ A ∧ ¬ x ∈ A) | |
2 | eqid 2353 | . . . . 5 ⊢ x = x | |
3 | 1, 2 | 2th 230 | . . . 4 ⊢ (¬ (x ∈ A ∧ ¬ x ∈ A) ↔ x = x) |
4 | 3 | con1bii 321 | . . 3 ⊢ (¬ x = x ↔ (x ∈ A ∧ ¬ x ∈ A)) |
5 | 4 | abbii 2466 | . 2 ⊢ {x ∣ ¬ x = x} = {x ∣ (x ∈ A ∧ ¬ x ∈ A)} |
6 | dfnul2 3553 | . 2 ⊢ ∅ = {x ∣ ¬ x = x} | |
7 | df-rab 2624 | . 2 ⊢ {x ∈ A ∣ ¬ x ∈ A} = {x ∣ (x ∈ A ∧ ¬ x ∈ A)} | |
8 | 5, 6, 7 | 3eqtr4i 2383 | 1 ⊢ ∅ = {x ∈ A ∣ ¬ x ∈ A} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: difidALT 3620 |
Copyright terms: Public domain | W3C validator |