New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0iin | GIF version |
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
0iin | ⊢ ∩x ∈ ∅ A = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 3973 | . 2 ⊢ ∩x ∈ ∅ A = {y ∣ ∀x ∈ ∅ y ∈ A} | |
2 | vex 2863 | . . . 4 ⊢ y ∈ V | |
3 | ral0 3655 | . . . 4 ⊢ ∀x ∈ ∅ y ∈ A | |
4 | 2, 3 | 2th 230 | . . 3 ⊢ (y ∈ V ↔ ∀x ∈ ∅ y ∈ A) |
5 | 4 | abbi2i 2465 | . 2 ⊢ V = {y ∣ ∀x ∈ ∅ y ∈ A} |
6 | 1, 5 | eqtr4i 2376 | 1 ⊢ ∩x ∈ ∅ A = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 Vcvv 2860 ∅c0 3551 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-iin 3973 |
This theorem is referenced by: iinrab2 4030 riin0 4040 |
Copyright terms: Public domain | W3C validator |