| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfnul2 | GIF version | ||
| Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) | 
| Ref | Expression | 
|---|---|
| dfnul2 | ⊢ ∅ = {x ∣ ¬ x = x} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nul 3552 | . . . 4 ⊢ ∅ = (V ∖ V) | |
| 2 | 1 | eleq2i 2417 | . . 3 ⊢ (x ∈ ∅ ↔ x ∈ (V ∖ V)) | 
| 3 | eldif 3222 | . . 3 ⊢ (x ∈ (V ∖ V) ↔ (x ∈ V ∧ ¬ x ∈ V)) | |
| 4 | eqid 2353 | . . . . 5 ⊢ x = x | |
| 5 | pm3.24 852 | . . . . 5 ⊢ ¬ (x ∈ V ∧ ¬ x ∈ V) | |
| 6 | 4, 5 | 2th 230 | . . . 4 ⊢ (x = x ↔ ¬ (x ∈ V ∧ ¬ x ∈ V)) | 
| 7 | 6 | con2bii 322 | . . 3 ⊢ ((x ∈ V ∧ ¬ x ∈ V) ↔ ¬ x = x) | 
| 8 | 2, 3, 7 | 3bitri 262 | . 2 ⊢ (x ∈ ∅ ↔ ¬ x = x) | 
| 9 | 8 | eqabi 2465 | 1 ⊢ ∅ = {x ∣ ¬ x = x} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 ∖ cdif 3207 ∅c0 3551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 | 
| This theorem is referenced by: dfnul3 3554 rab0 3572 iotanul 4355 | 
| Copyright terms: Public domain | W3C validator |