New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfnul2 | GIF version |
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) |
Ref | Expression |
---|---|
dfnul2 | ⊢ ∅ = {x ∣ ¬ x = x} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 3551 | . . . 4 ⊢ ∅ = (V ∖ V) | |
2 | 1 | eleq2i 2417 | . . 3 ⊢ (x ∈ ∅ ↔ x ∈ (V ∖ V)) |
3 | eldif 3221 | . . 3 ⊢ (x ∈ (V ∖ V) ↔ (x ∈ V ∧ ¬ x ∈ V)) | |
4 | eqid 2353 | . . . . 5 ⊢ x = x | |
5 | pm3.24 852 | . . . . 5 ⊢ ¬ (x ∈ V ∧ ¬ x ∈ V) | |
6 | 4, 5 | 2th 230 | . . . 4 ⊢ (x = x ↔ ¬ (x ∈ V ∧ ¬ x ∈ V)) |
7 | 6 | con2bii 322 | . . 3 ⊢ ((x ∈ V ∧ ¬ x ∈ V) ↔ ¬ x = x) |
8 | 2, 3, 7 | 3bitri 262 | . 2 ⊢ (x ∈ ∅ ↔ ¬ x = x) |
9 | 8 | abbi2i 2464 | 1 ⊢ ∅ = {x ∣ ¬ x = x} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2859 ∖ cdif 3206 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-nul 3551 |
This theorem is referenced by: dfnul3 3553 rab0 3571 iotanul 4354 |
Copyright terms: Public domain | W3C validator |