Proof of Theorem brpprod
Step | Hyp | Ref
| Expression |
1 | | df-pprod 5738 |
. . 3
⊢ PProd (R, S) = ((R ∘ 1st ) ⊗ (S ∘
2nd )) |
2 | 1 | breqi 4645 |
. 2
⊢ (A PProd (R, S)B ↔ A((R ∘ 1st ) ⊗ (S ∘
2nd ))B) |
3 | | brtxp 5783 |
. 2
⊢ (A((R ∘ 1st ) ⊗ (S ∘
2nd ))B ↔ ∃z∃w(B = 〈z, w〉 ∧ A(R ∘ 1st )z ∧ A(S ∘ 2nd )w)) |
4 | | brco 4883 |
. . . . . . . 8
⊢ (A(R ∘ 1st )z ↔ ∃x(A1st x ∧ xRz)) |
5 | 4 | anbi1i 676 |
. . . . . . 7
⊢ ((A(R ∘ 1st )z ∧ A(S ∘ 2nd )w) ↔ (∃x(A1st x ∧ xRz) ∧ A(S ∘ 2nd )w)) |
6 | | 19.41v 1901 |
. . . . . . 7
⊢ (∃x((A1st x ∧ xRz) ∧ A(S ∘ 2nd )w) ↔ (∃x(A1st x ∧ xRz) ∧ A(S ∘ 2nd )w)) |
7 | | an32 773 |
. . . . . . . . 9
⊢ (((A1st x ∧ xRz) ∧ A(S ∘ 2nd )w) ↔ ((A1st x ∧ A(S ∘ 2nd )w) ∧ xRz)) |
8 | | vex 2862 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
9 | 8 | br1st 4858 |
. . . . . . . . . . . 12
⊢ (A1st x ↔ ∃y A = 〈x, y〉) |
10 | 9 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((A1st x ∧ A(S ∘ 2nd )w) ↔ (∃y A = 〈x, y〉 ∧ A(S ∘ 2nd )w)) |
11 | | 19.41v 1901 |
. . . . . . . . . . 11
⊢ (∃y(A = 〈x, y〉 ∧ A(S ∘ 2nd )w) ↔ (∃y A = 〈x, y〉 ∧ A(S ∘ 2nd )w)) |
12 | | breq1 4642 |
. . . . . . . . . . . . . 14
⊢ (A = 〈x, y〉 → (A(S ∘ 2nd )w ↔ 〈x, y〉(S ∘ 2nd )w)) |
13 | | vex 2862 |
. . . . . . . . . . . . . . 15
⊢ y ∈
V |
14 | 8, 13 | brco2nd 5778 |
. . . . . . . . . . . . . 14
⊢ (〈x, y〉(S ∘
2nd )w ↔ ySw) |
15 | 12, 14 | syl6bb 252 |
. . . . . . . . . . . . 13
⊢ (A = 〈x, y〉 → (A(S ∘ 2nd )w ↔ ySw)) |
16 | 15 | pm5.32i 618 |
. . . . . . . . . . . 12
⊢ ((A = 〈x, y〉 ∧ A(S ∘ 2nd )w) ↔ (A =
〈x,
y〉 ∧ ySw)) |
17 | 16 | exbii 1582 |
. . . . . . . . . . 11
⊢ (∃y(A = 〈x, y〉 ∧ A(S ∘ 2nd )w) ↔ ∃y(A = 〈x, y〉 ∧ ySw)) |
18 | 10, 11, 17 | 3bitr2i 264 |
. . . . . . . . . 10
⊢ ((A1st x ∧ A(S ∘ 2nd )w) ↔ ∃y(A = 〈x, y〉 ∧ ySw)) |
19 | 18 | anbi1i 676 |
. . . . . . . . 9
⊢ (((A1st x ∧ A(S ∘ 2nd )w) ∧ xRz) ↔ (∃y(A = 〈x, y〉 ∧ ySw) ∧ xRz)) |
20 | | anass 630 |
. . . . . . . . . . . 12
⊢ (((A = 〈x, y〉 ∧ xRz) ∧ ySw) ↔ (A =
〈x,
y〉 ∧ (xRz ∧ ySw))) |
21 | | an32 773 |
. . . . . . . . . . . 12
⊢ (((A = 〈x, y〉 ∧ xRz) ∧ ySw) ↔ ((A =
〈x,
y〉 ∧ ySw) ∧ xRz)) |
22 | 20, 21 | bitr3i 242 |
. . . . . . . . . . 11
⊢ ((A = 〈x, y〉 ∧ (xRz ∧ ySw)) ↔ ((A =
〈x,
y〉 ∧ ySw) ∧ xRz)) |
23 | 22 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw)) ↔ ∃y((A = 〈x, y〉 ∧ ySw) ∧ xRz)) |
24 | | 19.41v 1901 |
. . . . . . . . . 10
⊢ (∃y((A = 〈x, y〉 ∧ ySw) ∧ xRz) ↔ (∃y(A = 〈x, y〉 ∧ ySw) ∧ xRz)) |
25 | 23, 24 | bitr2i 241 |
. . . . . . . . 9
⊢ ((∃y(A = 〈x, y〉 ∧ ySw) ∧ xRz) ↔ ∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw))) |
26 | 7, 19, 25 | 3bitri 262 |
. . . . . . . 8
⊢ (((A1st x ∧ xRz) ∧ A(S ∘ 2nd )w) ↔ ∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw))) |
27 | 26 | exbii 1582 |
. . . . . . 7
⊢ (∃x((A1st x ∧ xRz) ∧ A(S ∘ 2nd )w) ↔ ∃x∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw))) |
28 | 5, 6, 27 | 3bitr2i 264 |
. . . . . 6
⊢ ((A(R ∘ 1st )z ∧ A(S ∘ 2nd )w) ↔ ∃x∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw))) |
29 | 28 | anbi2i 675 |
. . . . 5
⊢ ((B = 〈z, w〉 ∧ (A(R ∘ 1st )z ∧ A(S ∘ 2nd )w)) ↔ (B =
〈z,
w〉 ∧ ∃x∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw)))) |
30 | | 3anass 938 |
. . . . 5
⊢ ((B = 〈z, w〉 ∧ A(R ∘ 1st )z ∧ A(S ∘ 2nd )w) ↔ (B =
〈z,
w〉 ∧ (A(R ∘
1st )z ∧ A(S ∘
2nd )w))) |
31 | | 3ancoma 941 |
. . . . . . . 8
⊢ ((A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw)) ↔ (B =
〈z,
w〉 ∧ A = 〈x, y〉 ∧ (xRz ∧ ySw))) |
32 | | 3anass 938 |
. . . . . . . 8
⊢ ((B = 〈z, w〉 ∧ A = 〈x, y〉 ∧ (xRz ∧ ySw)) ↔ (B =
〈z,
w〉 ∧ (A = 〈x, y〉 ∧ (xRz ∧ ySw)))) |
33 | 31, 32 | bitri 240 |
. . . . . . 7
⊢ ((A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw)) ↔ (B =
〈z,
w〉 ∧ (A = 〈x, y〉 ∧ (xRz ∧ ySw)))) |
34 | 33 | 2exbii 1583 |
. . . . . 6
⊢ (∃x∃y(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw)) ↔ ∃x∃y(B = 〈z, w〉 ∧ (A = 〈x, y〉 ∧ (xRz ∧ ySw)))) |
35 | | 19.42vv 1907 |
. . . . . 6
⊢ (∃x∃y(B = 〈z, w〉 ∧ (A = 〈x, y〉 ∧ (xRz ∧ ySw))) ↔ (B =
〈z,
w〉 ∧ ∃x∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw)))) |
36 | 34, 35 | bitri 240 |
. . . . 5
⊢ (∃x∃y(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw)) ↔ (B =
〈z,
w〉 ∧ ∃x∃y(A = 〈x, y〉 ∧ (xRz ∧ ySw)))) |
37 | 29, 30, 36 | 3bitr4i 268 |
. . . 4
⊢ ((B = 〈z, w〉 ∧ A(R ∘ 1st )z ∧ A(S ∘ 2nd )w) ↔ ∃x∃y(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw))) |
38 | 37 | 2exbii 1583 |
. . 3
⊢ (∃z∃w(B = 〈z, w〉 ∧ A(R ∘ 1st )z ∧ A(S ∘ 2nd )w) ↔ ∃z∃w∃x∃y(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw))) |
39 | | exrot4 1745 |
. . 3
⊢ (∃z∃w∃x∃y(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw)) ↔ ∃x∃y∃z∃w(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw))) |
40 | 38, 39 | bitri 240 |
. 2
⊢ (∃z∃w(B = 〈z, w〉 ∧ A(R ∘ 1st )z ∧ A(S ∘ 2nd )w) ↔ ∃x∃y∃z∃w(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw))) |
41 | 2, 3, 40 | 3bitri 262 |
1
⊢ (A PProd (R, S)B ↔ ∃x∃y∃z∃w(A = 〈x, y〉 ∧ B = 〈z, w〉 ∧ (xRz ∧ ySw))) |