New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcco | GIF version |
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcco | ⊢ ([̣A / y]̣[̣y / x]̣φ ↔ [̣A / x]̣φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3056 | . 2 ⊢ ([̣A / y]̣[̣y / x]̣φ → A ∈ V) | |
2 | sbcex 3056 | . 2 ⊢ ([̣A / x]̣φ → A ∈ V) | |
3 | dfsbcq 3049 | . . 3 ⊢ (z = A → ([̣z / y]̣[̣y / x]̣φ ↔ [̣A / y]̣[̣y / x]̣φ)) | |
4 | dfsbcq 3049 | . . 3 ⊢ (z = A → ([̣z / x]̣φ ↔ [̣A / x]̣φ)) | |
5 | sbsbc 3051 | . . . . . 6 ⊢ ([y / x]φ ↔ [̣y / x]̣φ) | |
6 | 5 | sbbii 1653 | . . . . 5 ⊢ ([z / y][y / x]φ ↔ [z / y][̣y / x]̣φ) |
7 | nfv 1619 | . . . . . 6 ⊢ Ⅎyφ | |
8 | 7 | sbco2 2086 | . . . . 5 ⊢ ([z / y][y / x]φ ↔ [z / x]φ) |
9 | sbsbc 3051 | . . . . 5 ⊢ ([z / y][̣y / x]̣φ ↔ [̣z / y]̣[̣y / x]̣φ) | |
10 | 6, 8, 9 | 3bitr3ri 267 | . . . 4 ⊢ ([̣z / y]̣[̣y / x]̣φ ↔ [z / x]φ) |
11 | sbsbc 3051 | . . . 4 ⊢ ([z / x]φ ↔ [̣z / x]̣φ) | |
12 | 10, 11 | bitri 240 | . . 3 ⊢ ([̣z / y]̣[̣y / x]̣φ ↔ [̣z / x]̣φ) |
13 | 3, 4, 12 | vtoclbg 2916 | . 2 ⊢ (A ∈ V → ([̣A / y]̣[̣y / x]̣φ ↔ [̣A / x]̣φ)) |
14 | 1, 2, 13 | pm5.21nii 342 | 1 ⊢ ([̣A / y]̣[̣y / x]̣φ ↔ [̣A / x]̣φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: sbc7 3074 sbccom 3118 sbcralt 3119 csbco 3146 |
Copyright terms: Public domain | W3C validator |